Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
1.
Semin Immunol ; 67: 101750, 2023 05.
Article in English | MEDLINE | ID: mdl-37003057

ABSTRACT

The repertoire of naturally presented peptides within the MHC (major histocompatibility complex) or HLA (human leukocyte antigens) system on the cellular surface of every mammalian cell is referred to as ligandome or immunopeptidome. This later gained momentum upon the discovery of CD8 + T cells able to recognize and kill cancer cells in an MHC-I antigen-restricted manner. Indeed, cancer immune surveillance relies on T cell recognition of MHC-I-restricted peptides, making the identification of those peptides the core for designing T cell-based cancer vaccines. Moreover, the breakthrough of antibodies targeting immune checkpoint molecules has led to a new and strong interest in discovering suitable targets for CD8 +T cells. Therapeutic cancer vaccines are designed for the artificial generation and/or stimulation of CD8 +T cells; thus, their combination with ICIs to unleash the breaks of the immune system comes as a natural consequence to enhance anti-tumor efficacy. In this context, the identification and knowledge of peptide candidates take advantage of the fast technology updates in immunopeptidome and mass spectrometric methodologies, paying the way to the rational design of vaccines for immunotherapeutic approaches. In this review, we discuss mainly the role of immunopeptidome analysis and its application for the generation of therapeutic cancer vaccines with main focus on HLA-I peptides. Here, we review cancer vaccine platforms based on two different preparation methods: pathogens (viruses and bacteria) and not (VLPs, nanoparticles, subunits vaccines) that exploit discoveries in the ligandome field to generate and/or enhance anti-tumor specific response. Finally, we discuss possible drawbacks and future challenges in the field that remain still to be addressed.


Subject(s)
Cancer Vaccines , Neoplasms , Animals , Humans , Histocompatibility Antigens Class I , Neoplasms/therapy , CD8-Positive T-Lymphocytes , Peptides , Mammals/metabolism
2.
Biomacromolecules ; 23(12): 5148-5163, 2022 Dec 12.
Article in English | MEDLINE | ID: mdl-36394394

ABSTRACT

Immunotherapy is deemed one of the most powerful therapeutic approaches to treat cancer. However, limited response and tumor specificity are still major challenges to address. Herein, mannosylated polycations targeting mannose receptor- are developed as vectors for plasmid DNA (pDNA)-based vaccines to improve selective delivery of genetic material to antigen-presenting cells and enhance immune cell activation. Three diblock glycopolycations (M15A12, M29A25, and M58A45) and two triblock copolymers (M29A29B9 and M62A52B32) are generated by using mannose (M), agmatine (A), and butyl (B) derivatives to target CD206, complex nucleic acids, and favor the endosomal escape, respectively. All glycopolycations efficiently complex pDNA at N/P ratios <5, protecting the pDNA from degradation in a physiological milieu. M58A45 and M62A52B32 complexed with plasmid encoding for antigenic ovalbumin (pOVA) trigger the immune activation of cultured dendritic cells, which present the SIINFEKL antigenic peptide via specific major histocompatibility complex-I. Importantly, administration of M58A45/pOVA elicits SIINFEKL-specific T-cell response in C56BL/6 mice bearing the melanoma tumor model B16-OVA, well in line with a reduction in tumor growth. These results qualify mannosylation as an efficient strategy to target immune cells in cancer vaccination and emphasize the potential of these glycopolycations as effective delivery vehicles for nucleic acids.


Subject(s)
Cancer Vaccines , Neoplasms , Nucleic Acids , Vaccines , Mice , Animals , Dendritic Cells , Ovalbumin , Antigen-Presenting Cells , Lymphocyte Activation , Antigen Presentation , T-Lymphocytes , Nucleic Acids/metabolism , Mice, Inbred C57BL , Cancer Vaccines/genetics , Cancer Vaccines/metabolism , Neoplasms/therapy , Neoplasms/metabolism
3.
Int J Mol Sci ; 21(17)2020 Aug 27.
Article in English | MEDLINE | ID: mdl-32867069

ABSTRACT

BACKGROUND: Remarkable deregulation of several microRNAs (miRNAs) is demonstrated in cutaneous melanoma. hsa-miR-193a-3p is reported to be under-expressed in tissues and in plasma of melanoma patients, but the role of both miR-193a arms in melanoma is not known yet. METHODS: After observing the reduced levels of miR-193a arms in plasma exosomes of melanoma patients, the effects of hsa-miR-193a-3p and -5p transfection in cutaneous melanoma cell lines are investigated. RESULTS: In melanoma cell lines A375, 501Mel, and MeWo, the ectopic over-expression of miR-193a arms significantly reduced cell viability as well as the expression of genes involved in proliferation (ERBB2, KRAS, PIK3R3, and MTOR) and apoptosis (MCL1 and NUSAP1). These functional features were accompanied by a significant downregulation of Akt and Erk pathways and a strong increase in the apoptotic process. Since in silico databases revealed TROY, an orphan member of the tumor necrosis receptor family, as a potential direct target of miR-193a-5p, this possibility was investigated using the luciferase assay and excluded by our results. CONCLUSIONS: Our results underline a relevant role of miR-193a, both -3p and -5p, as tumor suppressors clarifying the intracellular mechanisms involved and suggesting that their ectopic over-expression could represent a novel treatment for cutaneous melanoma patients.


Subject(s)
Down-Regulation , Melanoma/genetics , MicroRNAs/genetics , Skin Neoplasms/genetics , 3' Untranslated Regions , Case-Control Studies , Cell Line, Tumor , Cell Proliferation , Cell Survival , Exosomes/genetics , Female , Gene Expression Regulation, Neoplastic , Gene Regulatory Networks , Humans , Male , Melanoma/blood , Middle Aged , Signal Transduction , Skin Neoplasms/blood , Melanoma, Cutaneous Malignant
4.
Bioconjug Chem ; 30(3): 572-582, 2019 03 20.
Article in English | MEDLINE | ID: mdl-30620563

ABSTRACT

The B-cell lymphoma 2 (Bcl-2) gene encodes for an antiapoptotic protein associated with the onset of many human tumors. Several oligonucleotides (ONs) and ON analogues are under study as potential tools to counteract the Bcl-2 expression. Among these are Peptide Nucleic Acids (PNAs). The absence of charges on PNA backbones allows the formation of PNA/DNA complexes provided with higher stability than the corresponding natural DNA/DNA counterparts. To date, the use of PNAs in antigene or antisense strategies is strongly limited by their inability to efficiently cross the cellular membranes. With the aim of downregulating the expression of Bcl-2, we propose here a novel antigene approach which uses oncolytic adenoviral vectors (OAds) as a new cancer cell-targeted PNA delivery system. The ability of oncolytic Ad5D24 vectors to selectively infect and kill cancer cells was exploited to transfect with high efficiency and selectivity a short cytosine-rich PNA complementary to the longest loop of the main G-quadruplex formed by the 23-base-long bcl2midG4 sequence located 52-30 bp upstream of the P1 promoter of Bcl-2 gene. Physico-chemical and biological investigations confirmed the ability of the PNA-conjugated Ad5D24 vectors to load and transfect their PNA cargo into human A549 and MDA-MB-436 cancer cell lines, as well as the synergistic (OAd+PNA) cytotoxic effect against the same cell lines. This approach holds promise for safer chemotherapy because of reduced toxicity to healthy tissues and organs.


Subject(s)
Adenoviridae/genetics , Genetic Vectors/administration & dosage , Neoplasms/therapy , Peptide Nucleic Acids/administration & dosage , Proto-Oncogene Proteins c-bcl-2/genetics , Cell Line, Tumor , Drug Delivery Systems , G-Quadruplexes , Genetic Therapy , Genetic Vectors/genetics , Genetic Vectors/therapeutic use , Humans , Neoplasms/genetics , Peptide Nucleic Acids/genetics , Peptide Nucleic Acids/therapeutic use , Proto-Oncogene Mas
5.
Mol Ther ; 26(9): 2315-2325, 2018 09 05.
Article in English | MEDLINE | ID: mdl-30005865

ABSTRACT

The approval of the first oncolytic virus for the treatment of metastatic melanoma and the compiling evidence that the use of oncolytic viruses can enhance cancer immunotherapies targeted against various immune checkpoint proteins has attracted great interest in the field of cancer virotherapy. We have developed a novel platform for clinically relevant enveloped viruses that can direct the virus-induced immune response against tumor antigens. By physically attaching tumor-specific peptides onto the viral envelope of vaccinia virus and herpes simplex virus 1 (HSV-1), we were able to induce a strong T cell-specific immune response toward these tumor antigens. These therapeutic peptides could be attached onto the viral envelope by using a cell-penetrating peptide sequence derived from human immunodeficiency virus Tat N-terminally fused to the tumor-specific peptides or, alternatively, therapeutic peptides could be conjugated with cholesterol for the attachment of the peptides onto the viral envelope. We used two mouse models of melanoma termed B16.OVA and B16-F10 for testing the efficacy of OVA SIINFEKL-peptide-coated viruses and gp100-Trp2-peptide-coated viruses, respectively, and show that by coating the viral envelope with therapeutic peptides, the anti-tumor immunity and the number of tumor-specific CD8+ T cells in the tumor microenvironment can be significantly enhanced.


Subject(s)
Cancer Vaccines/chemistry , Peptides/metabolism , A549 Cells , Animals , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Cancer Vaccines/immunology , Cancer Vaccines/therapeutic use , Cell Line, Tumor , Chlorocebus aethiops , Herpesvirus 1, Human/metabolism , Humans , Melanoma/immunology , Melanoma/therapy , Mice , Oncolytic Virotherapy/methods , Oncolytic Viruses , Peptides/immunology , Vaccinia virus/metabolism , Vero Cells , Viral Envelope Proteins/metabolism
6.
J Immunother Cancer ; 12(3)2024 Mar 08.
Article in English | MEDLINE | ID: mdl-38458776

ABSTRACT

BACKGROUND: Cancer immunotherapy relies on using the immune system to recognize and eradicate cancer cells. Adaptive immunity, which consists of mainly antigen-specific cytotoxic T cells, plays a pivotal role in controlling cancer progression. However, innate immunity is a necessary component of the cancer immune response to support an immunomodulatory state, enabling T-cell immunosurveillance. METHODS: Here, we elucidated and exploited innate immune cells to sustain the generation of antigen-specific T cells on the use of our cancer vaccine platform. We explored a previously developed oncolytic adenovirus (AdCab) encoding for a PD-L1 (Programmed-Death Ligand 1) checkpoint inhibitor, which consists of a PD-1 (Programmed Cell Death Protein 1) ectodomain fused to an IgG/A cross-hybrid Fc. We coated AdCab with major histocompatibility complex (MHC-I)-restricted tumor peptides, generating a vaccine platform (named PeptiCab); the latter takes advantage of viral immunogenicity, peptide cancer specificity to prime T-cell responses, and antibody-mediated effector functions. RESULTS: As proof of concept, PeptiCab was used in murine models of melanoma and colon cancer, resulting in tumor growth control and generation of systemic T-cell-mediated antitumor responses. In specific, PeptiCab was able to generate antitumor T effector memory cells able to secrete various inflammatory cytokines. Moreover, PeptiCab was able to polarize neutrophils to attain an antigen-presenting phenotype by upregulating MHC-II, CD80 and CD86 resulting in an enhanced T-cell expansion. CONCLUSION: Our data suggest that exploiting innate immunity activates T-cell antitumor responses, enhancing the efficiency of a vaccine platform based on oncolytic adenovirus coated with MHC-I-restricted tumor peptides.


Subject(s)
Neoplasms , Receptors, IgG , Humans , Animals , Mice , Adaptive Immunity , T-Lymphocytes, Cytotoxic , Cytokines/metabolism , Neoplasms/therapy , Neoplasms/pathology
7.
Oncoimmunology ; 13(1): 2369373, 2024.
Article in English | MEDLINE | ID: mdl-38915784

ABSTRACT

Dendritic cells (DCs) are the main antigen presenting cells of the immune system and are essential for anti-tumor responses. DC-based immunotherapies are used in cancer treatment, but their functionality is not optimized and their clinical efficacy is currently limited. Approaches to improve DC functionality in anti-tumor immunity are therefore required. We have previously shown that the loss of ß2-integrin-mediated adhesion leads to epigenetic reprogramming of bone marrow-derived DCs (BM-DCs), resulting in an increased expression of costimulatory markers (CD86, CD80, and CD40), cytokines (IL-12) and the chemokine receptor CCR7. We now show that the loss of ß2-integrin-mediated adhesion of BM-DCs also leads to a generally suppressed metabolic profile, with reduced metabolic rate, decreased ROS production, and lowered glucose uptake in cells. The mRNA levels of glycolytic enzymes and glucose transporters were reduced, indicating transcriptional regulation of the metabolic phenotype. Surprisingly, although signaling through a central regulator of immune cell metabolisms, the mechanistic target of rapamycin (mTOR), was increased in BM-DCs with dysfunctional integrins, rapamycin treatment revealed that mTOR signaling was not involved in suppressing DC metabolism. Instead, bioinformatics and functional analyses showed that the Ikaros transcription factor may be involved in regulating the metabolic profile of non-adhesive DCs. Inversely, we found that induction of metabolic stress through treatment of cells with low levels of an inhibitor of glycolysis, 2-deoxyglucose (2DG), led to increased BM-DC activation. Specifically, 2DG treatment led to increased levels of Il-12 and Ccr7 mRNA, increased production of IL-12, increased levels of cell surface CCR7 and increased in vitro migration and T cell activation potential. Furthermore, 2DG treatment led to increased histone methylation in cells (H3K4me3, H3K27me3), indicating metabolic reprogramming. Finally, metabolic stress induced by 2DG treatment led to improved BM-DC-mediated anti-tumor responses in vivo in a melanoma cancer model, B16-OVA. In conclusion, our results indicate a role for ß2-integrin-mediated adhesion in regulating a novel type of metabolic reprogramming of DCs and DC-mediated anti-tumor responses, which may be targeted to enhance DC-mediated anti-tumor responses in cancer immunotherapy.


Subject(s)
CD18 Antigens , Dendritic Cells , Dendritic Cells/metabolism , Dendritic Cells/immunology , Animals , Mice , CD18 Antigens/metabolism , CD18 Antigens/genetics , Mice, Inbred C57BL , Cell Adhesion , Receptors, CCR7/metabolism , Receptors, CCR7/genetics , Melanoma, Experimental/pathology , Melanoma, Experimental/immunology , Melanoma, Experimental/metabolism , Melanoma, Experimental/genetics , Signal Transduction , TOR Serine-Threonine Kinases/metabolism , Humans , Metabolic Reprogramming
8.
Mol Ther Oncol ; 32(1): 200766, 2024 Mar 21.
Article in English | MEDLINE | ID: mdl-38596301

ABSTRACT

Cancer immunotherapy requires a specific antitumor CD8+ T cell-driven immune response; however, upon genetic and epigenetic alterations of the antigen processing and presenting components, cancer cells escape the CD8+ T cell recognition. As a result, poorly immunogenic tumors are refractory to conventional immunotherapy. In this context, the use of viral cancer vaccines in combination with hypomethylating agents represents a promising strategy to prevent cancer from escaping immune system recognition. In this study, we evaluated the sensitivity of melanoma (B16-expressing ovalbumin) and metastatic triple-negative breast cancer (4T1) cell lines to FDA-approved low-dose decitabine in combination with PeptiCRAd, an adenoviral anticancer vaccine. The two models showed different sensitivity to decitabine in vitro and in vivo when combined with PeptiCRAd. In particular, mice bearing syngeneic 4T1 cancer showed higher tumor growth control when receiving the combinatorial treatment compared to single controls in association with a higher expression of MHC class I on cancer cells and reduction in Tregs within the tumor microenvironment. Furthermore, remodeling of the CD8+ T cell infiltration and cytotoxic activity toward cancer cells confirmed the effect of decitabine in enhancing anticancer vaccines in immunotherapy regimens.

9.
Int J Biol Macromol ; 262(Pt 1): 129926, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38331062

ABSTRACT

The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) posed a threat to public health and the global economy, necessitating the development of various vaccination strategies. Mutations in the SPIKE protein gene, a crucial component of mRNA and adenovirus-based vaccines, raised concerns about vaccine efficacy, prompting the need for rapid vaccine updates. To address this, we leveraged PeptiCRAd, an oncolytic vaccine based on tumor antigen decorated oncolytic adenoviruses, creating a vaccine platform called PeptiVAX. First, we identified multiple CD8 T-cell epitopes from highly conserved regions across coronaviruses, expanding the range of T-cell responses to non-SPIKE proteins. We designed short segments containing the predicted epitopes presented by common HLA-Is in the global population. Testing the immunogenicity, we characterized T-cell responses to candidate peptides in peripheral blood mononuclear cells (PBMCs) from pre-pandemic healthy donors and ICU patients. As a proof of concept in mice, we selected a peptide with epitopes predicted to bind to murine MHC-I haplotypes. Our technology successfully elicited peptide-specific T-cell responses, unaffected by the use of unarmed adenoviral vectors or adeno-based vaccines encoding SPIKE. In conclusion, PeptiVAX represents a fast and adaptable SARS-CoV-2 vaccine delivery system that broadens T-cell responses beyond the SPIKE protein, offering potential benefits for vaccine effectiveness.


Subject(s)
COVID-19 , Viral Vaccines , Humans , Mice , Animals , COVID-19 Vaccines , COVID-19/prevention & control , Spike Glycoprotein, Coronavirus/genetics , Leukocytes, Mononuclear , SARS-CoV-2 , Peptides/chemistry , Epitopes, T-Lymphocyte
10.
Cancers (Basel) ; 15(4)2023 Feb 17.
Article in English | MEDLINE | ID: mdl-36831638

ABSTRACT

Oncolytic virus (OV)-based immunotherapy is mainly dependent on establishing an efficient cell-mediated antitumor immunity. OV-mediated antitumor immunity elicits a renewed antitumor reactivity, stimulating a T-cell response against tumor-associated antigens (TAAs) and recruiting natural killer cells within the tumor microenvironment (TME). Despite the fact that OVs are unspecific cancer vaccine platforms, to further enhance antitumor immunity, it is crucial to identify the potentially immunogenic T-cell restricted TAAs, the main key orchestrators in evoking a specific and durable cytotoxic T-cell response. Today, innovative approaches derived from systems biology are exploited to improve target discovery in several types of cancer and to identify the MHC-I and II restricted peptide repertoire recognized by T-cells. Using specific computation pipelines, it is possible to select the best tumor peptide candidates that can be efficiently vectorized and delivered by numerous OV-based platforms, in order to reinforce anticancer immune responses. Beyond the identification of TAAs, system biology can also support the engineering of OVs with improved oncotropism to reduce toxicity and maintain a sufficient portion of the wild-type virus virulence. Finally, these technologies can also pave the way towards a more rational design of armed OVs where a transgene of interest can be delivered to TME to develop an intratumoral gene therapy to enhance specific immune stimuli.

11.
Mol Ther Oncolytics ; 28: 264-276, 2023 Mar 16.
Article in English | MEDLINE | ID: mdl-36911070

ABSTRACT

Immune checkpoint inhibitors have clinical success in prolonging the life of many cancer patients. However, only a minority of patients benefit from such therapy, calling for further improvements. Currently, most PD-L1 checkpoint inhibitors in the clinic do not elicit Fc effector mechanisms that would substantially increase their efficacy. To gain potency and circumvent off-target effects, we previously designed an oncolytic adenovirus (Ad-Cab) expressing an Fc fusion peptide against PD-L1 on a cross-hybrid immunoglobulin GA (IgGA) Fc. Ad-Cab elicited antibody effector mechanisms of IgG1 and IgA, which led to higher tumor killing compared with each isotype alone and with clinically approved PD-L1 checkpoint inhibitors. In this study, we further improved the therapy to increase the IgG1 Fc effector mechanisms of the IgGA Fc fusion peptide (Ad-Cab FT) by adding four somatic mutations that increase natural killer (NK) cell activation. Ad-Cab FT was shown to work better at lower concentrations compared with Ad-Cab in vitro and in vivo and to have better tumor- and myeloid-derived suppressor cell killing, likely because of higher NK cell activation. Additionally, the biodistribution of the Fc fusion peptide demonstrated targeted release in the tumor microenvironment with minimal or no leakage to the peripheral blood and organs in mice. These data demonstrate effective and safe use of Ad-Cab FT, bidding for further clinical investigation.

12.
iScience ; 26(10): 107668, 2023 Oct 20.
Article in English | MEDLINE | ID: mdl-37720092

ABSTRACT

Gut microbiota plays a key role in modulating responses to cancer immunotherapy in melanoma patients. Oncolytic viruses (OVs) represent emerging tools in cancer therapy, inducing a potent immunogenic cancer cell death (ICD) and recruiting immune cells in tumors, poorly infiltrated by T cells. We investigated whether the antitumoral activity of oncolytic adenovirus Ad5D24-CpG (Ad-CpG) was gut microbiota-mediated in a syngeneic mouse model of melanoma and observed that ICD was weakened by vancomycin-mediated perturbation of gut microbiota. Ad-CpG efficacy was increased by oral supplementation with Bifidobacterium, reducing melanoma progression and tumor-infiltrating regulatory T cells. Fecal microbiota was enriched in bacterial species belonging to the Firmicutes phylum in mice treated with both Bifidobacterium and Ad-CpG; furthermore, our data suggest that molecular mimicry between melanoma and Bifidobacterium-derived epitopes may favor activation of cross-reactive T cells and constitutes one of the mechanisms by which gut microbiota modulates OVs response.

13.
Nat Commun ; 14(1): 7056, 2023 11 03.
Article in English | MEDLINE | ID: mdl-37923723

ABSTRACT

Malignant pleural mesothelioma (MPM) is an aggressive tumor with a poor prognosis. As the available therapeutic options show a lack of efficacy, novel therapeutic strategies are urgently needed. Given its T-cell infiltration, we hypothesized that MPM is a suitable target for therapeutic cancer vaccination. To date, research on mesothelioma has focused on the identification of molecular signatures to better classify and characterize the disease, and little is known about therapeutic targets that engage cytotoxic (CD8+) T cells. In this study we investigate the immunopeptidomic antigen-presented landscape of MPM in both murine (AB12 cell line) and human cell lines (H28, MSTO-211H, H2452, and JL1), as well as in patients' primary tumors. Applying state-of-the-art immuno-affinity purification methodologies, we identify MHC I-restricted peptides presented on the surface of malignant cells. We characterize in vitro the immunogenicity profile of the eluted peptides using T cells from human healthy donors and cancer patients. Furthermore, we use the most promising peptides to formulate an oncolytic virus-based precision immunotherapy (PeptiCRAd) and test its efficacy in a mouse model of mesothelioma in female mice. Overall, we demonstrate that the use of immunopeptidomic analysis in combination with oncolytic immunotherapy represents a feasible and effective strategy to tackle untreatable tumors.


Subject(s)
Lung Neoplasms , Mesothelioma, Malignant , Mesothelioma , Pleural Neoplasms , Humans , Female , Animals , Mice , Pleural Neoplasms/drug therapy , Mesothelioma/drug therapy , Immunotherapy , Peptides/therapeutic use , Cell Line, Tumor , Lung Neoplasms/pathology
14.
Sci Adv ; 9(48): eadg8014, 2023 12.
Article in English | MEDLINE | ID: mdl-38039364

ABSTRACT

To study and then harness the tumor-specific T cell dynamics after allogeneic hematopoietic stem cell transplant, we typed the frequency, phenotype, and function of lymphocytes directed against tumor-associated antigens (TAAs) in 39 consecutive transplanted patients, for 1 year after transplant. We showed that TAA-specific T cells circulated in 90% of patients but display a limited effector function associated to an exhaustion phenotype, particularly in the subgroup of patients deemed to relapse, where exhausted stem cell memory T cells accumulated. Accordingly, cancer-specific cytolytic functions were relevant only when the TAA-specific T cell receptors (TCRs) were transferred into healthy, genome-edited T cells. We then exploited trogocytosis and ligandome-on-chip technology to unveil the specificities of tumor-specific TCRs retrieved from the exhausted T cell pool. Overall, we showed that harnessing circulating TAA-specific and exhausted T cells allow to isolate TCRs against TAAs and previously not described acute myeloid leukemia antigens, potentially relevant for T cell-based cancer immunotherapy.


Subject(s)
Leukemia, Myeloid, Acute , T-Cell Exhaustion , Humans , Trogocytosis , Receptors, Antigen, T-Cell/genetics , T-Lymphocytes , Antigens, Neoplasm , Leukemia, Myeloid, Acute/therapy
15.
Mol Ther Oncolytics ; 25: 137-145, 2022 Jun 16.
Article in English | MEDLINE | ID: mdl-35572195

ABSTRACT

Common vaccines for infectious diseases have been repurposed as cancer immunotherapies. The intratumoral administration of these repurposed vaccines can induce immune cell infiltration into the treated tumor. Here, we have used an approved trivalent live attenuated measles, mumps, and rubella (MMR) vaccine in our previously developed PeptiENV cancer vaccine platform. The intratumoral administration of this novel MMR-containing PeptiENV cancer vaccine significantly increased both intratumoral as well as systemic tumor-specific T cell responses. In addition, PeptiENV therapy, in combination with immune checkpoint inhibitor therapy, improved tumor growth control and survival as well as increased the number of mice responsive to immune checkpoint inhibitor therapy. Importantly, mice pre-vaccinated with the MMR vaccine responded equally well, if not better, to the PeptiENV therapy, indicating that pre-existing immunity against the MMR vaccine viruses does not compromise the use of this novel cancer vaccine platform.

16.
Acta Biomater ; 152: 473-483, 2022 10 15.
Article in English | MEDLINE | ID: mdl-36087872

ABSTRACT

Photothermal therapy (PTT) in combination with other treatment modalities has shown great potential to activate immunotherapy against tumor metastasis. However, the nanoparticles (NPs) that generate PTT have served as the photothermal agent only. Moreover, researchers have widely utilized highly immunogenic tumor models to evaluate the immune response of these NPs thus giving over-optimistic results. In the present study black porous silicon (BPSi) NPs were developed to serve as both the photothermal agent and the adjuvant for PTT-based antitumor immunotherapy. We found that the poorly immunogenic tumor models such as B16 are more valid to evaluate NP-based immunotherapy than the widely used immunogenic models such as CT26. Based on the B16 cancer model, a cocktail regimen was developed that combined BPSi-based PTT with doxorubicin (DOX) and cytosine-phosphate-guanosine (CpG). BPSi-based PTT was an important trigger to activate the specific immunotherapy to inhibit tumor growth by featuring the selective upregulation of TNF-α. Either by adding a low dose DOX or by prolonging the laser heating time, a similar efficacy of immunotherapy was evoked to inhibit tumor growth. Moreover, BPSi acted as a co-adjuvant for CpG to significantly boost the immunotherapy. The present study demonstrates that the BPSi-based regimen is a potent and safe antitumor immunotherapy modality. Moreover, our study highlighted that tuning the laser heating parameters of PTT is an alternative to the toxic cytostatic to evoke immunotherapy, paving the way to optimize the PTT-based combination therapy for enhanced efficacy and decreased side effects. STATEMENT OF SIGNIFICANCE: Tumor metastasis causes directly or indirectly more than 90% of cancer deaths. Combination of photothermal therapy (PTT), chemotherapy and immunotherapy based on nanoparticles (NPs) has shown great potential to inhibit distant and metastatic tumors. However, these NPs typically act only as photothermal agents and many of them have been evaluated with immunogenic tumor models. The present study developed black porous silicon working as both the photothermal conversion agent and the immunoadjuvant to inhibit distant tumor. It was recognized that the poorly immunogenic tumor model B16 is more appropriate to evaluate immunotherapy than the widely used immunogenic model CT26. The coordination mechanism of the PTT-based combination therapy regimen was discovered in detail, paving the way to optimize cancer immunotherapy for enhanced efficacy and decreased side effects.


Subject(s)
Cytostatic Agents , Hyperthermia, Induced , Nanoparticles , Neoplasms , Adjuvants, Immunologic , Cell Line, Tumor , Cytosine , Doxorubicin/pharmacology , Doxorubicin/therapeutic use , Guanosine , Humans , Immunotherapy/methods , Nanoparticles/therapeutic use , Neoplasms/therapy , Phosphates , Phototherapy , Porosity , Silicon/pharmacology , Tumor Necrosis Factor-alpha
17.
Front Immunol ; 13: 826164, 2022.
Article in English | MEDLINE | ID: mdl-35493448

ABSTRACT

Oncolytic Viruses (OVs) work through two main mechanisms of action: the direct lysis of the virus-infected cancer cells and the release of tumor antigens as a result of the viral burst. In this sc.enario, the OVs act as in situ cancer vaccines, since the immunogenicity of the virus is combined with tumor antigens, that direct the specificity of the anti-tumor adaptive immune response. However, this mechanism in some cases fails in eliciting a strong specific T cell response. One way to overcome this problem and enhance the priming efficiency is the production of genetically modified oncolytic viruses encoding one or more tumor antigens. To avoid the long and expensive process related to the engineering of the OVs, we have exploited an approach based on coating OVs (adenovirus and vaccinia virus) with tumor antigens. In this work, oncolytic viruses encoding tumor antigens and tumor antigen decorated adenoviral platform (PeptiCRAd) have been used as cancer vaccines and evaluated both for their prophylactic and therapeutic efficacy. We have first tested the oncolytic vaccines by exploiting the OVA model, moving then to TRP2, a more clinically relevant tumor antigen. Finally, both approaches have been investigated in tumor neo-antigens settings. Interestingly, both genetically modified oncolytic adenovirus and PeptiCRAd elicited T cells-specific anti-tumor responses. However, in vitro cross-representation experiments, showed an advantage of PeptiCRAd as regards the fast presentation of the model epitope SIINFEKL from OVA in an immunogenic rather than tolerogenic fashion. Here two approaches used as cancer oncolytic vaccines have been explored and characterized for their efficacy. Although the generation of specific anti-tumor T cells was elicited in both approaches, PeptiCRAd retains the advantage of being rapidly adaptable by coating the adenovirus with a different set of tumor antigens, which is crucial in personalized cancer vaccines clinical setting.


Subject(s)
Cancer Vaccines , Neoplasms , Oncolytic Virotherapy , Oncolytic Viruses , Adenoviridae , Antigens, Neoplasm , Humans , Oncolytic Viruses/genetics , Peptides , Precision Medicine , Vaccines, Subunit
18.
Elife ; 112022 03 22.
Article in English | MEDLINE | ID: mdl-35314027

ABSTRACT

Besides the isolation and identification of major histocompatibility complex I-restricted peptides from the surface of cancer cells, one of the challenges is eliciting an effective antitumor CD8+ T-cell-mediated response as part of therapeutic cancer vaccine. Therefore, the establishment of a solid pipeline for the downstream selection of clinically relevant peptides and the subsequent creation of therapeutic cancer vaccines are of utmost importance. Indeed, the use of peptides for eliciting specific antitumor adaptive immunity is hindered by two main limitations: the efficient selection of the most optimal candidate peptides and the use of a highly immunogenic platform to combine with the peptides to induce effective tumor-specific adaptive immune responses. Here, we describe for the first time a streamlined pipeline for the generation of personalized cancer vaccines starting from the isolation and selection of the most immunogenic peptide candidates expressed on the tumor cells and ending in the generation of efficient therapeutic oncolytic cancer vaccines. This immunopeptidomics-based pipeline was carefully validated in a murine colon tumor model CT26. Specifically, we used state-of-the-art immunoprecipitation and mass spectrometric methodologies to isolate >8000 peptide targets from the CT26 tumor cell line. The selection of the target candidates was then based on two separate approaches: RNAseq analysis and HEX software. The latter is a tool previously developed by Jacopo, 2020, able to identify tumor antigens similar to pathogen antigens in order to exploit molecular mimicry and tumor pathogen cross-reactive T cells in cancer vaccine development. The generated list of candidates (26 in total) was further tested in a functional characterization assay using interferon-γ enzyme-linked immunospot (ELISpot), reducing the number of candidates to six. These peptides were then tested in our previously described oncolytic cancer vaccine platform PeptiCRAd, a vaccine platform that combines an immunogenic oncolytic adenovirus (OAd) coated with tumor antigen peptides. In our work, PeptiCRAd was successfully used for the treatment of mice bearing CT26, controlling the primary malignant lesion and most importantly a secondary, nontreated, cancer lesion. These results confirmed the feasibility of applying the described pipeline for the selection of peptide candidates and generation of therapeutic oncolytic cancer vaccine, filling a gap in the field of cancer immunotherapy, and paving the way to translate our pipeline into human therapeutic approach.


Subject(s)
Cancer Vaccines , Neoplasms , Adenoviridae , Animals , Antigens, Neoplasm , CD8-Positive T-Lymphocytes , Cancer Vaccines/therapeutic use , Cell Line, Tumor , Immunotherapy/methods , Mice , Neoplasms/drug therapy , Peptides
19.
Mol Ther Methods Clin Dev ; 20: 625-634, 2021 Mar 12.
Article in English | MEDLINE | ID: mdl-33718513

ABSTRACT

Oncolytic adenoviruses have become ideal agents in the path toward treating cancer. Such viruses have been engineered to conditionally replicate in malignant cells in which certain signaling pathways have been disrupted. Other than such oncolytic properties, the viruses need to activate the immune system in order to sustain a long-term response. Therefore, oncolytic adenoviruses have been genetically modified to express various immune-stimulatory agents to achieve this. However, genetically modifying adenoviruses is very time consuming and labor intensive with the current available methods. In this paper, we describe a novel method we have called GAMER-Ad to genetically modify adenovirus genomes within 2 days. Our method entails the replacement of the gp19k gene in the E3 region with any given gene of interest (GOI) using Gibson Assembly avoiding the homologous recombination between the shuttle and the parental plasmid. In this manuscript as proof of concept we constructed and characterized three oncolytic adenoviruses expressing CXCL9, CXCL10, and interleukin-15 (IL-15). We demonstrate that our novel method is fast, reliable, and simple compared to other methods. We anticipate that our method will be used in the future to genetically engineer oncolytic but also other adenoviruses used for gene therapy as well.

20.
J Immunother Cancer ; 9(7)2021 07.
Article in English | MEDLINE | ID: mdl-34266884

ABSTRACT

BACKGROUND: Intratumoral BCG therapy, one of the earliest immunotherapies, can lead to infiltration of immune cells into a treated tumor. However, an increase in the number of BCG-induced tumor-specific T cells in the tumor microenvironment could lead to enhanced therapeutic effects. METHODS: Here, we have developed a novel cancer vaccine platform based on BCG that can broaden BCG-induced immune responses to include tumor antigens. By physically attaching tumor-specific peptides onto the mycobacterial outer membrane, we were able to induce strong systemic and intratumoral T cell-specific immune responses toward the attached tumor antigens. These therapeutic peptides can be efficiently attached to the mycobacterial outer membrane using a poly-lysine sequence N-terminally fused to the tumor-specific peptides. RESULTS: Using two mouse models of melanoma and a mouse model of colorectal cancer, we observed that the antitumor immune responses of BCG could be improved by coating the BCG with tumor-specific peptides. In addition, by combining this novel cancer vaccine platform with anti-programmed death 1 (anti-PD-1) immune checkpoint inhibitor (ICI) therapy, the number of responders to anti-PD-1 immunotherapy was markedly increased. CONCLUSIONS: This study shows that intratumoral BCG immunotherapy can be improved by coating the bacteria with modified tumor-specific peptides. In addition, this improved BCG immunotherapy can be combined with ICI therapy to obtain enhanced tumor growth control. These results warrant clinical testing of this novel cancer vaccine platform.


Subject(s)
BCG Vaccine/therapeutic use , Cancer Vaccines/therapeutic use , Immunotherapy/methods , Precision Medicine/methods , Animals , BCG Vaccine/pharmacology , Cancer Vaccines/pharmacology , Cell Line, Tumor , Disease Models, Animal , Female , Humans , Mice
SELECTION OF CITATIONS
SEARCH DETAIL