ABSTRACT
INTRODUCTION: Immune-mediated necrotizing myopathies (IMNMs) are characterized by progressive weakness, elevated serum creatine kinase levels, and necrotizing myopathic features on muscle biopsy. Presence of highly specific autoantibodies against signal recognition particle (SRP) or 3-hydroxy-3-methylglutaryl- coenzyme A reductase (HMGCR) can aid in recognition and confirmation of IMNMs. METHODS: In this study we describe a boy with HMGCR-positive necrotizing myopathy and highlight the clinical features of the patient. RESULTS: In contrast to most adults, the patient described had a more indolent disease course, reminiscent of a muscular dystrophy. Intravenous immunoglobulin monotherapy resulted in a dramatic clinical response with return to normal strength. CONCLUSIONS: Systematic consideration of IMNMs and testing for relevant autoantibodies in children with suspected but genetically unconfirmed muscular dystrophy may help improve diagnostic accuracy and allow timely treatment with potentially highly effective immunotherapies. Muscle Nerve 56: 175-179, 2017.
Subject(s)
Autoantibodies/blood , Hydroxymethylglutaryl CoA Reductases/blood , Muscular Diseases/blood , Muscular Diseases/diagnostic imaging , Adolescent , Diagnosis, Differential , Humans , Male , Muscular Dystrophies/blood , Muscular Dystrophies/diagnostic imaging , Necrosis/blood , Necrosis/diagnostic imagingABSTRACT
Objective: To determine the prevalence and clinical features of anti-HMGCR myopathy among patients with presumed limb-girdle muscular dystrophy (LGMD) in whom genetic testing has failed to elucidate causative mutations. Methods: Patients with presumed LGMD and unrevealing genetic testing were selected based on a few clinico-pathologic features and tested for anti-HMGCR autoantibodies (n = 11). These clinico-pathologic features are peak creatine kinase (CK) greater than 1,000 IU/L and at least 3 of the following features: (1) limb-girdle pattern of weakness, (2) selective involvement of posterior thigh on clinical examination or muscle imaging, (3) dystrophic changes on muscle biopsy, and (4) no family history of muscular dystrophy. Results: Six patients tested positive for anti-HMGCR autoantibodies. In 4, there was a presymptomatic phase, lasting as long as 10 years, characterized by elevated CK levels without weakness. Muscle biopsies revealed variable degrees of a dystrophic pathology without prominent inflammation. In an independent cohort of patients with anti-HMGCR myopathy, 17 of 51 (â¼33%) patients were initially presumed to have a form of LGMD based on clinico-pathologic features but were ultimately found to have anti-HMGCR myopathy. Most of these patients responded favorably to immunomodulatory therapies, evidenced by reduction of CK levels and improved strength. Conclusions: Anti-HMGCR myopathy can resemble LGMD. Diagnosis of patients with a LGMD-like presentation of anti-HMGCR myopathy is critical because these patients may respond favorably to immunotherapy, especially those with shorter disease duration.
Subject(s)
Hydroxymethylglutaryl CoA Reductases/immunology , Muscular Diseases/diagnosis , Muscular Diseases/immunology , Muscular Dystrophies, Limb-Girdle/diagnosis , Muscular Dystrophies, Limb-Girdle/immunology , Adolescent , Adult , Autoantibodies/immunology , Child , Cohort Studies , Female , Humans , Male , Middle Aged , Muscular Diseases/epidemiology , Muscular Dystrophies, Limb-Girdle/epidemiologyABSTRACT
The ryanodine receptor 1-related congenital myopathies (RYR1-RM) comprise a spectrum of slow, rare neuromuscular diseases. Affected individuals present with a mild-to-severe symptomatology ranging from proximal muscle weakness, hypotonia and joint contractures to scoliosis, ophthalmoplegia, and respiratory involvement. Although there is currently no FDA-approved treatment for RYR1-RM, our group recently conducted the first clinical trial in this patient population (NCT02362425). This study aimed to characterize novel RYR1 variants with regard to genetic, laboratory, muscle magnetic resonance imaging (MRI), and clinical findings. Genetic and histopathology reports were obtained from participant's medical records. Alamut Visual Software was used to determine if participant's variants had been previously reported and to assess predicted pathogenicity. Physical exams, pulmonary function tests, T1-weighted muscle MRI scans, and blood measures were completed during the abovementioned clinical trial. Six novel variants (two de novo, three dominant, and one recessive) were identified in individuals with RYR1-RM. Consistent with established RYR1-RM histopathology, cores were observed in all biopsies, except Case 6 who exhibited fiber-type disproportion. Muscle atrophy and impaired mobility with Trendelenburg gait were the most common clinical symptoms and were identified in all cases. Muscle MRI revealed substantial inter-individual variation in fatty infiltration corroborating the heterogeneity of the disease. Two individuals with dominant RYR1 variants exhibited respiratory insufficiency: a clinical symptom more commonly associated with recessive RYR1-RM cases. This study demonstrates that a genetics-led approach is suitable for the diagnosis of suspected RYR1-RM which can be corroborated through histopathology, muscle MRI and clinical examination.
ABSTRACT
Dystroglycanopathies are a subtype of congenital muscular dystrophy of varying severity that can affect the brain and eyes, ranging from Walker-Warburg syndrome with severe brain malformation to milder congenital muscular dystrophy presentations with affected or normal cognition and later onset. Mutations in dystroglycanopathy genes affect a specific glycoepitope on α-dystroglycan; of the 14 genes implicated to date, LARGE encodes the glycosyltransferase that adds the final xylose and glucuronic acid, allowing α-dystroglycan to bind ligands, including laminin 211 and neurexin. Only 11 patients with LARGE mutations have been reported. We report the clinical, neuroimaging, and genetic features of 4 additional patients. We confirm that gross deletions and rearrangements are important mutational mechanisms for LARGE. The brain abnormalities overshadowed the initially mild muscle phenotype in all 4 patients. We present the first comprehensive postnatal neuropathology of the brain, spinal cord, and eyes of a patient with a homozygous LARGE mutation at Cys443. In this patient, polymicrogyria was the predominant cortical malformation; densely festooned polymicrogyria were overlaid by a continuous agyric surface. In view of the severity of these abnormalities, Cys443 may be a functionally important residue in the LARGE protein, whereas the mutation p.Glu509Lys of Patient 1 in this study may confer a milder phenotype. Overall, these results expand the clinical and genetic spectrum of dystroglycanopathy.
Subject(s)
Dystroglycans/genetics , Muscular Dystrophies/genetics , Muscular Dystrophies/pathology , Mutation/genetics , N-Acetylglucosaminyltransferases/genetics , Child , Child, Preschool , Fatal Outcome , Female , Homozygote , Humans , Infant , Male , Muscular Dystrophies/diagnosis , Pedigree , Polymorphism, Single Nucleotide/geneticsABSTRACT
Although pyridoxine-dependent seizures have been reported for decades, pyridoxamine phosphate oxidase deficiency has only been recently described. Pyridoxamine phosphate oxidase (PNPO) is one of a series of enzymes involved in converting pyridoxine to pyridoxal 5'-phosphate, the biologically active form of pyridoxine. PNPO deficiency is associated with decreased levels of pyridoxal 5'-phosphate in CSF, as well as epilepsy. We describe four children up to 16 years of age with intractable seizures who all had low cerebrospinal fluid (CSF) levels of pyridoxal 5'-phosphate. Only one of the four children possessed a genetic alteration, a novel homozygous variant in exon one of the PNPO gene. Three of four, however, showed at least some clinical improvement with pyridoxal 5'-phosphate supplementation. Low CSF pyridoxal 5'-phosphate levels, although considered a diagnostic biomarker for PNPO deficiency, lack specificity and may result from multiple other causes. Genetic testing and CSF evaluation, along with clinical response are all necessary for accurate diagnosis.