Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 43
Filter
1.
Int J Mol Sci ; 24(14)2023 Jul 21.
Article in English | MEDLINE | ID: mdl-37511494

ABSTRACT

Corticotropin-releasing hormone (CRH) neurons in the paraventricular hypothalamic nucleus (PVH) are in the position to integrate stress-related information and initiate adaptive neuroendocrine-, autonomic-, metabolic- and behavioral responses. In addition to hypophyseotropic cells, CRH is widely expressed in the CNS, however its involvement in the organization of the stress response is not fully understood. In these experiments, we took advantage of recently available Crh-IRES-Cre;Ai9 mouse line to study the recruitment of hypothalamic and extrahypothalamic CRH neurons in categorically distinct, acute stress reactions. A total of 95 brain regions in the adult male mouse brain have been identified as containing putative CRH neurons with significant expression of tdTomato marker gene. With comparison of CRH mRNA and tdTomato distribution, we found match and mismatch areas. Reporter mice were then exposed to restraint, ether, high salt, lipopolysaccharide and predator odor stress and neuronal activation was revealed by FOS immunocytochemistry. In addition to a core stress system, stressor-specific areas have been revealed to display activity marker FOS. Finally, activation of CRH neurons was detected by colocalization of FOS in tdTomato expressing cells. All stressors resulted in profound activation of CRH neurons in the hypothalamic paraventricular nucleus; however, a differential activation of pattern was observed in CRH neurons in extrahypothalamic regions. This comprehensive description of stress-related CRH neurons in the mouse brain provides a starting point for a systematic functional analysis of the brain stress system and its relation to stress-induced psychopathologies.


Subject(s)
Corticotropin-Releasing Hormone , Hypothalamus , Mice , Male , Animals , Corticotropin-Releasing Hormone/metabolism , Hypothalamus/metabolism , Brain/metabolism , Neurons/metabolism , Paraventricular Hypothalamic Nucleus/metabolism
2.
Int J Mol Sci ; 23(3)2022 Jan 25.
Article in English | MEDLINE | ID: mdl-35163282

ABSTRACT

The relevance of vasopressin (AVP) of magnocellular origin to the regulation of the endocrine stress axis and related behaviour is still under discussion. We aimed to obtain deeper insight into this process. To rescue magnocellular AVP synthesis, a vasopressin-containing adeno-associated virus vector (AVP-AAV) was injected into the supraoptic nucleus (SON) of AVP-deficient Brattleboro rats (di/di). We compared +/+, di/di, and AVP-AAV treated di/di male rats. The AVP-AAV treatment rescued the AVP synthesis in the SON both morphologically and functionally. It also rescued the peak of adrenocorticotropin release triggered by immune and metabolic challenges without affecting corticosterone levels. The elevated corticotropin-releasing hormone receptor 1 mRNA levels in the anterior pituitary of di/di-rats were diminished by the AVP-AAV-treatment. The altered c-Fos synthesis in di/di-rats in response to a metabolic stressor was normalised by AVP-AAV in both the SON and medial amygdala (MeA), but not in the central and basolateral amygdala or lateral hypothalamus. In vitro electrophysiological recordings showed an AVP-induced inhibition of MeA neurons that was prevented by picrotoxin administration, supporting the possible regulatory role of AVP originating in the SON. A memory deficit in the novel object recognition test seen in di/di animals remained unaffected by AVP-AAV treatment. Interestingly, although di/di rats show intact social investigation and aggression, the SON AVP-AAV treatment resulted in an alteration of these social behaviours. AVP released from the magnocellular SON neurons may stimulate adrenocorticotropin secretion in response to defined stressors and might participate in the fine-tuning of social behaviour with a possible contribution from the MeA.


Subject(s)
Adrenocorticotropic Hormone/metabolism , Supraoptic Nucleus/metabolism , Vasopressins/metabolism , Adrenocorticotropic Hormone/genetics , Animals , Basal Nucleus of Meynert/metabolism , Brain/metabolism , Corticosterone/metabolism , Corticotropin-Releasing Hormone/metabolism , Hypothalamo-Hypophyseal System/metabolism , Male , Neurons/metabolism , Paraventricular Hypothalamic Nucleus/metabolism , RNA, Messenger/metabolism , Rats , Rats, Brattleboro , Social Behavior , Vasopressins/physiology
3.
Brain Behav Immun ; 84: 218-228, 2020 02.
Article in English | MEDLINE | ID: mdl-31821847

ABSTRACT

Chronic stress is often accompanied by gastrointestinal symptoms, which might be due to stress-induced shift of gut microbiome to pathogenic bacteria. It has been hypothesized that stress alters gut permeability and results in mild endotoxemia which exaggerates HPA activity and contributes to anxiety and depression. To reveal the relationship between microbiome composition, stress-induced gastrointestinal functions and behavior, we treated chronically stressed mice with non-absorbable antibiotic, rifaximin. The "two hits" stress paradigm was used, where newborn mice were separated from their mothers for 3 h daily as early life adversity (maternal separation, MS) and exposed to 4 weeks chronic variable stress (CVS) as adults. 16S rRNA based analysis of gut microbiome revealed increases of Bacteroidetes and Proteobacteria and more specifically, Clostridium species in chronically stressed animals. In mice exposed to MS + CVS, we found extenuation of colonic mucosa, increased bacterial translocation to mesenteric lymph node, elevation of plasma LPS levels and infiltration of F4/80 positive macrophages into the colon lamina propria. Chronically stressed mice displayed behavioral signs of anxiety-like behavior and neophobia. Rifaximin treatment decreased Clostridium concentration, gut permeability and LPS plasma concentration and increased colonic expression of tight junction proteins (TJP1, TJP2) and occludin. However, these beneficial effects of rifaximin in chronically stressed mice was not accompanied by positive changes in behavior. Our results suggest that non-absorbable antibiotic treatment alleviates stress-induced local pathologies, however, does not affect stress-induced behavior.


Subject(s)
Gastrointestinal Microbiome , Microbiota , Rifaximin , Animals , Anti-Bacterial Agents/pharmacology , Behavior, Animal/drug effects , Colon/drug effects , Colon/microbiology , Gastrointestinal Microbiome/drug effects , Maternal Deprivation , Mice , Permeability/drug effects , RNA, Ribosomal, 16S/genetics , Rifaximin/pharmacology , Stress, Physiological/drug effects
4.
Planta Med ; 86(11): 790-799, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32450572

ABSTRACT

Intestinal α-glucosidase and α-amylase break down nutritional poly- and oligosaccharides to monosaccharides and their activity significantly contributes to postprandial hyperglycemia. Competitive inhibitors of these enzymes, such as acarbose, are effective antidiabetic drugs, but have unpleasant side effects. In our ethnopharmacology inspired investigations, we found that wild strawberry (Fragaria vesca), blackberry (Rubus fruticosus), and European blueberry (Vaccinium myrtillus) leaf extracts inhibit α-glucosidase and α-amylase enzyme activity in vitro and are effective in preventing postprandial hyperglycemia in vivo. Toxicology tests on H9c2 rat embryonic cardiac muscle cells demonstrated that berry leaf extracts have no cytotoxic effects. Oral administration of these leaf extracts alone or as a mixture to normal (control), obese, prediabetic, and streptozotocin-induced diabetic mice attenuated the starch-induced rise of blood glucose levels. The efficiency was similar to that of acarbose on blood glucose. These results highlight berry leaf extracts as candidates for testing in clinical trials in order to assess the clinical significance of their effects on glycemic control.


Subject(s)
Blueberry Plants , Diabetes Mellitus, Experimental , Fragaria , Hyperglycemia , Prediabetic State , Rubus , Animals , Blood Glucose , Glycoside Hydrolase Inhibitors , Hypoglycemic Agents , Mice , Plant Extracts , Rats , Starch
5.
Int J Mol Sci ; 21(17)2020 Aug 27.
Article in English | MEDLINE | ID: mdl-32867390

ABSTRACT

There is an increasing number of studies showing that thrombocytosis-accompanying a variety of solid tumors including colorectal cancer (CRC)-is associated with shorter survival and earlier development of metastases. The mechanisms of cancer-associated thrombocytosis are not completely understood yet. The aim of our study was to evaluate the role of IL-6 in tumor development and thrombocytosis in mice with inflammation-induced CRC, using a CRISPR/cas9 IL-6 knockout (KO) strain. Adult male FB/Ant mice (n = 39) were divided into four groups: (1) IL-6 KO controls (n = 5); (2) IL-6 KO CRC model group (n = 18); (3) Wild-type (WT) controls (n = 6); and (4) WT CRC model group (n = 10). CRC model animals in (2) and (4) received azoxymethane (AOM)/dextran sodium sulfate (DSS) treatment to induce inflammation-related CRC. Plasma and liver tissues were obtained to determine platelet counts, IL-6 and thrombopoietin-1 (TPO) levels. In 1 WT and 2 IL-6 KO mice in vivo confocal endomicroscopy and 18F-fluorodeoxyglucose (FDG) PET/MRI examinations were performed to evaluate the inflammatory burden and neoplastic transformation. At the end of the study, tumorous foci could be observed macroscopically in both CRC model groups. Platelet counts were significantly elevated in the WT CRC group compared to the IL-6 KO CRC group. TPO levels moved parallelly with platelet counts. In vivo fluorescent microscopy showed signs of disordered and multi-nuclear crypt morphology with increased mucus production in a WT animal, while regular mucosal structure was prominent in the IL-6 KO animals. The WT animal presented more intense and larger colonic FDG uptake than IL-6 KO animals. Our study confirmed thrombocytosis accompanying inflammation-related CRC and the crucial role of IL-6 in this process. Significantly higher platelet counts were found in the WT CRC group compared to both the control group and the IL-6 KO group. Concomitantly, the tumor burden of WT mice was also greater than that of IL-6 KO mice. Our findings are in line with earlier paraneoplastic IL-6 effect suggestions.


Subject(s)
Colitis-Associated Neoplasms/genetics , Interleukin-6/genetics , Thrombocytosis/genetics , Animals , Azoxymethane/adverse effects , Colitis-Associated Neoplasms/chemically induced , Colitis-Associated Neoplasms/complications , Colitis-Associated Neoplasms/diagnostic imaging , Dextran Sulfate/adverse effects , Disease Models, Animal , Gene Knockout Techniques , Magnetic Resonance Imaging , Male , Mice , Platelet Count , Positron-Emission Tomography , Thrombocytosis/blood , Thrombocytosis/etiology , Thrombocytosis/metabolism , Thrombopoietin/metabolism
6.
Acta Neuropathol ; 136(3): 461-482, 2018 09.
Article in English | MEDLINE | ID: mdl-30027450

ABSTRACT

Neurotropic herpesviruses can establish lifelong infection in humans and contribute to severe diseases including encephalitis and neurodegeneration. However, the mechanisms through which the brain's immune system recognizes and controls viral infections propagating across synaptically linked neuronal circuits have remained unclear. Using a well-established model of alphaherpesvirus infection that reaches the brain exclusively via retrograde transsynaptic spread from the periphery, and in vivo two-photon imaging combined with high resolution microscopy, we show that microglia are recruited to and isolate infected neurons within hours. Selective elimination of microglia results in a marked increase in the spread of infection and egress of viral particles into the brain parenchyma, which are associated with diverse neurological symptoms. Microglia recruitment and clearance of infected cells require cell-autonomous P2Y12 signalling in microglia, triggered by nucleotides released from affected neurons. In turn, we identify microglia as key contributors to monocyte recruitment into the inflamed brain, which process is largely independent of P2Y12. P2Y12-positive microglia are also recruited to infected neurons in the human brain during viral encephalitis and both microglial responses and leukocyte numbers correlate with the severity of infection. Thus, our data identify a key role for microglial P2Y12 in defence against neurotropic viruses, whilst P2Y12-independent actions of microglia may contribute to neuroinflammation by facilitating monocyte recruitment to the sites of infection.


Subject(s)
Brain/metabolism , Herpesviridae Infections/metabolism , Microglia/metabolism , Monocytes/metabolism , Receptors, Purinergic P2Y12/metabolism , Signal Transduction/physiology , Animals , Brain/virology , Mice , Microglia/virology , Neurons/metabolism , Neurons/virology
7.
Stress ; 21(2): 151-161, 2018 03.
Article in English | MEDLINE | ID: mdl-29310485

ABSTRACT

Glutamatergic neurons, characterized by vesicular glutamate transporters (VGluT1-3) provide the main excitation in the brain. Their disturbances have been linked to various brain disorders, which could be also modeled by the contextual fear test in rodents. We aimed to characterize the participation of VGluT3 in the development of contextual fear through its contribution to hypothalamic-pituitary-adrenocortical axis (HPA) regulation using knockout (KO) mice. Contextual fear conditioning was induced by foot shock and mice were examined 1 and 7 d later in the same environment comparing wild type with KO. Foot shock increased the immobility time without context specificity. Additionally, foot shock reduced open arm time in the elevated plus maze (EPM) test, and distance traveled in the open field (OF) test, representing the generalization of fear. Moreover, KO mice spent more time with freezing during the contextual fear test, less time in the open arm of the EPM, and traveled a smaller distance in the OF, with less entries into the central area. However, there was no foot shock and genotype interaction suggesting that VGluT3 does not influence the fear conditioning, rather determines anxiety-like characteristic of the mice. The resting hypothalamic CRH mRNA was higher in KO mice with reduced stressor-induced corticosterone elevations. Immunohistochemistry revealed the presence of VGluT3 positive fibers in the paraventricular nucleus of hypothalamus, but not on the hypophysis. As a summary, we confirmed the involvement of VGluT3 in innate fear, but not in the development of fear memory and generalization, with a significant contribution to HPA alterations. Highlights VGluT3 KO mice show innate fear without significant influence on fear memory and generalization. A putative background is the higher resting CRH mRNA level in their PVN and reduced stress-reactivity.


Subject(s)
Amino Acid Transport Systems, Acidic/metabolism , Fear/physiology , Memory/physiology , Amino Acid Transport Systems, Acidic/genetics , Animals , Conditioning, Classical/physiology , Corticosterone/blood , Hypothalamus/metabolism , Male , Mice , Mice, Knockout , Neurons/metabolism
8.
Acta Vet Hung ; 66(3): 394-407, 2018 Sep.
Article in English | MEDLINE | ID: mdl-30264617

ABSTRACT

The objective of this experiment was to determine whether fumonisin B1 (FB1) added to the diet of rats in a dose of 50 mg/kg changes the production of heat shock protein 70 (Hsp70) in the lungs and kidney of rats. We also studied the effect of this mycotoxin on the antioxidant system of the body. Mature (8 weeks old) male Wistar Crl:WI BR rats (n = 6/group) were fed the toxin-containing diet for 5 days. FB1 resulted in a 7% body weight reduction without significantly changing the feed intake. Western blot analysis of the lungs and kidney demonstrated a substantial (1.4-fold and 1.8-fold, respectively) increase in Hsp70 expression. Alterations could not be detected in the clinical chemical parameters (total protein, albumin, total cholesterol, glucose, creatinine and urea concentrations, and aspartate aminotransferase activity). There was no statistically significant change in malondialdehyde concentrations and the measured antioxidant parameters (the amount of reduced glutathione, GSH and glutathione peroxidase activity, GPx) in the blood plasma, lung and kidney tissue. Thus, it can be concluded that FB1 did not induce oxidative stress in the lungs and kidney, but increased Hsp70 production.


Subject(s)
Fumonisins/toxicity , HSP70 Heat-Shock Proteins/metabolism , Kidney/metabolism , Lung/metabolism , Animals , Carcinogens, Environmental/toxicity , Gene Expression Regulation/drug effects , HSP70 Heat-Shock Proteins/genetics , Kidney/drug effects , Lung/drug effects , Male , Rats , Rats, Wistar
9.
Biochim Biophys Acta ; 1861(11): 1614-1622, 2016 11.
Article in English | MEDLINE | ID: mdl-27417459

ABSTRACT

Brown adipose tissue (BAT) plays essential role in metabolic- and thermoregulation and displays morphological and functional plasticity in response to environmental and metabolic challenges. BAT is a heterogeneous tissue containing adipocytes and various immune-related cells, however, their interaction in regulation of BAT function is not fully elucidated. Fractalkine is a chemokine synthesized by adipocytes, which recruits fractalkine receptor (CX3CR1)-expressing leukocytes into the adipose tissue. Using transgenic mice, in which the fractalkine receptor, Cx3cr1 gene was replaced by Gfp, we evaluated whether deficiency in fractalkine signaling affects BAT remodeling and function in high-fat-diet - induced obesity. Homo- and heterozygote male CX3CR1-GFP mice were fed with normal or fat enriched (FatED) diet for 10weeks. Interscapular BAT was collected for molecular biological analysis. Heterozygous animals in which fractalkine signaling remains intact, gain more weight during FatED than CX3CR1 deficient gfp/gfp homozygotes. FatED in controls resulted in macrophage recruitment to the BAT with increased expression of proinflammatory mediators (Il1a, b, Tnfa and Ccl2). Local BAT inflammation was accompanied by increased expression of lipogenic enzymes and resulted in BAT "whitening". By contrast, fractalkine receptor deficiency prevented accumulation of tissue macrophages, selectively attenuated the expression of Tnfa, Il1a and Ccl2, increased BAT expression of lipolytic enzymes (Atgl, Hsl and Mgtl) and upregulated genes involved thermo-metabolism (Ucp1, Pparg Pgc1a) in response to FatED. These results highlight the importance of fractalkine-CX3CR1 interaction in recruitment of macrophages into the BAT of obese mice which might contribute to local tissue inflammation, adipose tissue remodeling and regulation of metabolic-related genes.


Subject(s)
Adipose Tissue, Brown/metabolism , Gene Expression Regulation , Macrophages/metabolism , Obesity/genetics , Obesity/metabolism , Receptors, Chemokine/metabolism , Adipose Tissue, White/metabolism , Animals , Biomarkers/metabolism , Body Weight , CX3C Chemokine Receptor 1 , Chemokine CX3CL1/deficiency , Chemokine CX3CL1/metabolism , Cold Temperature , Diet, High-Fat , Green Fluorescent Proteins/metabolism , Inflammation Mediators/metabolism , Lipogenesis/genetics , Lipolysis/genetics , Male , Mice, Inbred C57BL , Organ Size , Receptors, Chemokine/deficiency , Thermogenesis/genetics , Uncoupling Protein 1/genetics , Uncoupling Protein 1/metabolism
10.
Brain Behav Immun ; 38: 25-35, 2014 May.
Article in English | MEDLINE | ID: mdl-24456845

ABSTRACT

Diet-induced obesity and related peripheral and central inflammation are major risk factors for metabolic, neurological and psychiatric diseases. The chemokine fractalkine (Cx3CL1) and its receptor Cx3CR1 play a pivotal role in recruitment, infiltration and proinflammatory polarization of leukocytes and micoglial cells, however, the role of fractalkine signaling in the development of metabolic inflammation is not fully resolved. To address this issue, fractalkine receptor deficient (Cx3CR1 gfp/gfp) mice were exposed to normal or fat-enriched diet (FatED) for 10weeks and physiological-, metabolic- and immune parameters were compared to those animals in which the fractalkine signaling is maintained by the presence of one functioning allele (Cx3CR1 +/gfp). Mice with intact fractalkine signaling develop obesity characterized by increased epididymal white fat depots and mild glucose intolerance, recruit leukocytes into the visceral adipose tissue and display increased expression of subset of pro- and anti-inflammatory cytokines when exposed to fat-enriched diet. By contrast, Cx3CR1-deficient (gfp/gfp) mice gain significantly less weight on fat-enriched diet and have smaller amount of white adipose tissue (WAT) in the visceral compartment than heterozygote controls. Furthermore, Cx3CR1 gfp/gfp mice fed a fat-enriched diet do not develop glucose intolerance, recruit proportionally less number of gfp-positive cells and express significantly less MCP-1, IL-1α and TNFα in the WAT than control animals with fat-enriched diet induced obesity. Furthermore, heterozygote obese, but not fractalkine receptor deficient mice express high levels of anti-inflammatory IL-10 and arginase1 markers in the visceral fat. The effect of fat-enriched diet on cytokine expression pattern was specific for the WAT, as we did not detect significant elevation of interleukin-1, tumor necrosis factor-alpha and monocyte chemotacting protein (MCP-1) expression in the liver or in the hypothalamus in either genotype. These results highlight the importance of fractalkine signaling in recruitment and polarization of adipose tissue immune cells and identify fractalkine as a target to fight obesity-induced inflammatory complications.


Subject(s)
Adipose Tissue/metabolism , Chemokine CX3CL1/metabolism , Diet, High-Fat , Obesity/metabolism , Animals , Hypothalamo-Hypophyseal System/metabolism , Inflammation/metabolism , Male , Mice , Mice, Knockout , Pituitary-Adrenal System/metabolism
11.
Thromb Haemost ; 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38950604

ABSTRACT

OBJECTIVE: Hereditary aortic diseases (hADs) increase the risk of aortic dissections and ruptures. Recently, we have established an objective approach to measure the rupture force of the murine aorta, thereby explaining the outcomes of clinical studies and assessing the added value of approved drugs in vascular Ehlers-Danlos syndrome (vEDS). Here, we applied our approach to six additional mouse hAD models. MATERIAL AND METHODS: We used two mouse models (Fbn1C1041G and Fbn1mgR ) of Marfan syndrome (MFS) as well as one smooth-muscle-cell-specific knockout (SMKO) of Efemp2 and three CRISPR/Cas9-engineered knock-in models (Ltbp1, Mfap4, and Timp1). One of the two MFS models was subjected to 4-week-long losartan treatment. Per mouse, three rings of the thoracic aorta were prepared, mounted on a tissue puller, and uniaxially stretched until rupture. RESULTS: The aortic rupture force of the SMKO and both MFS models was significantly lower compared with wild-type mice but in both MFS models higher than in mice modeling vEDS. In contrast, the Ltbp1, Mfap4, and Timp1 knock-in models presented no impaired aortic integrity. As expected, losartan treatment reduced aneurysm formation but surprisingly had no impact on the aortic rupture force of our MFS mice. CONCLUSION: Our read-out system can characterize the aortic biomechanical integrity of mice modeling not only vEDS but also related hADs, allowing the aortic-rupture-force-focused comparison of mouse models. Furthermore, aneurysm progression alone may not be a sufficient read-out for aortic rupture, as antihypertensive drugs reducing aortic dilatation might not strengthen the weakened aortic wall. Our results may enable identification of improved medical therapies of hADs.

12.
Sci Rep ; 13(1): 22451, 2023 12 17.
Article in English | MEDLINE | ID: mdl-38105266

ABSTRACT

Previously, the presence of a blood-myenteric plexus barrier and its disruption was reported in experimentally induced colitis via a macrophage-dependent process. The aim of this study is to reveal how myenteric barrier disruption and subsequent neuronal injury affects gut motility in vivo in a murine colitis model. We induced colitis with dextran sulfate sodium (DSS), with the co-administration of liposome-encapsulated clodronate (L-clodronate) to simultaneously deplete blood monocytes contributing to macrophage infiltration in the inflamed muscularis of experimental mice. DSS-treated animals receiving concurrent L-clodronate injection showed significantly decreased blood monocyte numbers and colon muscularis macrophage (MM) density compared to DSS-treated control (DSS-vehicle). DSS-clodronate-treated mice exhibited significantly slower whole gut transit time than DSS-vehicle-treated animals and comparable to that of controls. Experiments with oral gavage-fed Evans-blue dye showed similar whole gut transit times in DSS-clodronate-treated mice as in control animals. Furthermore, qPCR-analysis and immunofluorescence on colon muscularis samples revealed that factors associated with neuroinflammation and neurodegeneration, including Bax1, Hdac4, IL-18, Casp8 and Hif1a are overexpressed after DSS-treatment, but not in the case of concurrent L-clodronate administration. Our findings highlight that MM-infiltration in the muscularis layer is responsible for colitis-associated dysmotility and enteric neuronal dysfunction along with the release of mediators associated with neurodegeneration in a murine experimental model.


Subject(s)
Clodronic Acid , Colitis , Mice , Animals , Clodronic Acid/pharmacology , Colitis/chemically induced , Inflammation , Macrophages , Colon , Dextran Sulfate/toxicity , Mice, Inbred C57BL , Disease Models, Animal
13.
iScience ; 25(8): 104693, 2022 Aug 19.
Article in English | MEDLINE | ID: mdl-35880047

ABSTRACT

There is a strong relationship between stress and metabolism. Because acute traumatic- and chronic stress events are often accompanied with metabolic pathophysiology, it is important to understand the details of the metabolic stress response. In this study we directly compared metabolic effects of acute stress with chronic repeated- and chronic unpredictable stress in mouse models. All types of adversities increased energy expenditure, chronic stress exposure decreased body weight gain, locomotor activity and differentially affected fuel utilization. During chronic exposure to variable stressors, carbohydrates were the predominant fuels, whereas fatty acids were catabolized in acutely and repeatedly restrained animals. Chronic exposure to variable stressors in unpredictable manner provoked anxiety. Our data highlight differences in metabolic responses to acute- repeated- and chronic stressors, which might affect coping behavior and underlie stress-induced metabolic and psychopathologies.

14.
Toxins (Basel) ; 14(9)2022 09 13.
Article in English | MEDLINE | ID: mdl-36136572

ABSTRACT

Mycotoxins are bioaccumulative contaminants impacting animals and humans. The simultaneous detection of frequent active exposures and accumulated mycotoxin level (s) in exposed organisms would be the most ideal to enable appropriate actions. However, few methods are available for the purpose, and there is a demand for dedicated, sensitive, reliable, and practical assays. To demonstrate the issue, mice were exposed to a relevant agent Ochratoxin A (OTA), and accumulated OTA was measured by fine-tuned commercial assays. Quantitative high-performance liquid chromatography with fluorescence detection, enzyme-linked immunosorbent assay, and flow cytometry assays have been developed/modified using reagents available as commercial products when appropriate. Assays were performed on excised samples, and results were compared. Accumulated OTA could be detected and quantified; positive correlations (between applied doses of exposure and accumulated OTA levels and the results from assays) were found. Dedicated assays could be developed, which provided comparable results. The presence and accumulation of OTA following even a short exposure could be quantitatively detected. The assays performed similarly, but HPLC had the greatest sensitivity. Blood contained higher levels of OTA than liver and kidney. We demonstrate that specific but flexible and practical assays should be used for specific/local purposes, to measure the exposure itself and accumulation in blood or organs.


Subject(s)
Body Fluids , Mycotoxins , Ochratoxins , Animals , Body Fluids/chemistry , Chromatography, High Pressure Liquid/methods , Food Contamination/analysis , Humans , Mice , Mycotoxins/analysis , Ochratoxins/analysis
15.
J Neuroinflammation ; 8: 164, 2011 Nov 24.
Article in English | MEDLINE | ID: mdl-22114895

ABSTRACT

BACKGROUND: Systemic inflammation impairs outcome in stroke patients and experimental animals via mechanisms which are poorly understood. Circulating inflammatory mediators can activate cerebrovascular endothelium or glial cells in the brain and impact on ischaemic brain injury. One of the most serious early clinical complications of cerebral ischaemia is brain oedema, which compromises survival in the first 24-48 h. It is not understood whether systemic inflammatory challenges impair outcome after stroke by increasing brain injury only or whether they have direct effects on brain oedema, cerebrovascular inflammation and blood-brain barrier damage. METHODS: We used two different systemic inflammatory stimuli, acute endotoxin treatment and anaphylaxis to study mechanisms of brain injury after middle cerebral artery occlusion (MCAo). Ischaemic brain injury, blood-brain barrier damage and oedema were analysed by histological techniques. Systemic cytokine responses and inflammatory changes in the brain were analysed by cytometric bead array, immunofluorescence, in situ hibridization and quantitative real-time PCR. RESULTS: Systemic inflammatory challenges profoundly impaired survival in the first 24 h after experimental stroke in mice, independently of an increase in infarct size. Systemic lipopolysaccharide (LPS) dose-dependently increased mortality (50-100%) minutes to hours after cerebral ischaemia. Acute anaphylactic challenge in ovalbumin-sensitised mice affected stroke more seriously when induced via intraperitoneal administration compared to intravenous. Both LPS and anaphylaxis induced inflammatory changes in the blood and in the brain prior to experimental stroke. Plasma cytokine levels were significantly higher after LPS, while increased IL-10 levels were seen after anaphylaxis. After MCAo, both LPS and anaphylaxis increased microglial interleukin-1α (IL-1α) expression and blood-brain barrier breakdown. LPS caused marked granulocyte recruitment throughout the ipsilateral hemisphere. To investigate whether reduction of ischaemic damage can improve outcome in systemic inflammation, controlled hypothermia was performed. Hypothermia reduced infarct size in all treatment groups and moderately improved survival, but failed to reduce excess oedema formation after anaphylaxis and LPS-induced neuroinflammation. CONCLUSIONS: Our results suggest that systemic inflammatory conditions induce cerebrovascular inflammation via diverse mechanisms. Increased brain inflammation, blood-brain barrier injury and brain oedema formation can be major contributors to impaired outcome in mice after experimental stroke with systemic inflammatory stimuli, independently of infarct size.


Subject(s)
Blood-Brain Barrier/pathology , Brain Edema/etiology , Brain Edema/pathology , Brain/pathology , Inflammation/etiology , Inflammation/pathology , Stroke/complications , Stroke/pathology , Anaphylaxis/immunology , Animals , Brain/immunology , Brain Ischemia/complications , Brain Ischemia/pathology , Cerebral Infarction/complications , Cerebral Infarction/pathology , Cytokines/immunology , Humans , Hypothermia, Induced , Infarction, Middle Cerebral Artery , Inflammation/immunology , Lipopolysaccharides/immunology , Lipopolysaccharides/pharmacology , Male , Mice , Mice, Inbred C57BL , Ovalbumin/immunology , Ovalbumin/pharmacology
16.
Cell Mol Gastroenterol Hepatol ; 12(5): 1617-1641, 2021.
Article in English | MEDLINE | ID: mdl-34246810

ABSTRACT

BACKGROUND & AIMS: Neuroinflammation in the gut is associated with many gastrointestinal (GI) diseases, including inflammatory bowel disease. In the brain, neuroinflammatory conditions are associated with blood-brain barrier (BBB) disruption and subsequent neuronal injury. We sought to determine whether the enteric nervous system is similarly protected by a physical barrier and whether that barrier is disrupted in colitis. METHODS: Confocal and electron microscopy were used to characterize myenteric plexus structure, and FITC-dextran assays were used to assess for presence of a barrier. Colitis was induced with dextran sulfate sodium, with co-administration of liposome-encapsulated clodronate to deplete macrophages. RESULTS: We identified a blood-myenteric barrier (BMB) consisting of extracellular matrix proteins (agrin and collagen-4) and glial end-feet, reminiscent of the BBB, surrounded by a collagen-rich periganglionic space. The BMB is impermeable to the passive movement of 4 kDa FITC-dextran particles. A population of macrophages is present within enteric ganglia (intraganglionic macrophages [IGMs]) and exhibits a distinct morphology from muscularis macrophages, with extensive cytoplasmic vacuolization and mitochondrial swelling but without signs of apoptosis. IGMs can penetrate the BMB in physiological conditions and establish direct contact with neurons and glia. Dextran sulfate sodium-induced colitis leads to BMB disruption, loss of its barrier integrity, and increased numbers of IGMs in a macrophage-dependent process. CONCLUSIONS: In intestinal inflammation, macrophage-mediated degradation of the BMB disrupts its physiological barrier function, eliminates the separation of the intra- and extra-ganglionic compartments, and allows inflammatory stimuli to access the myenteric plexus. This suggests a potential mechanism for the onset of neuroinflammation in colitis and other GI pathologies with acquired enteric neuronal dysfunction.


Subject(s)
Colitis/etiology , Colitis/metabolism , Macrophages/immunology , Macrophages/metabolism , Myenteric Plexus/cytology , Myenteric Plexus/metabolism , Animals , Biomarkers , Colitis/pathology , Disease Models, Animal , Disease Susceptibility , Enteric Nervous System/immunology , Enteric Nervous System/metabolism , Extracellular Matrix , Fluorescent Antibody Technique , Immunohistochemistry , Immunophenotyping , Mice , Myenteric Plexus/ultrastructure , Neuroglia/metabolism , Neuroglia/ultrastructure , Neuroinflammatory Diseases/etiology , Neuroinflammatory Diseases/metabolism , Neuroinflammatory Diseases/pathology , Neutrophil Infiltration
17.
Mol Ther Methods Clin Dev ; 20: 218-226, 2021 Mar 12.
Article in English | MEDLINE | ID: mdl-33426148

ABSTRACT

We developed an orally administered, engineered, bacterium-based, RNA interference-mediated therapeutic method to significantly reduce the symptoms in the most frequently used animal model of inflammatory bowel disease. This bacterium-mediated RNA interference strategy was based on the genomically stable, non-pathogenic E. coli MDS42 strain, which was engineered to constitutively produce invasin and the listeriolysin O cytolysin. These proteins enabled the bacteria first to invade the colon epithelium and then degrade in the phagosome. This allowed the delivery of a plasmid encoding small hairpin RNA (shRNA) targeting tumor necrosis factor (TNF) into the cytoplasm of the target cells. The expression levels of TNF and other cytokines significantly decreased upon this treatment in dextran sulfate sodium (DSS)-induced colitis, and the degree of inflammation was significantly reduced. With further safety modifications this method could serve as a safe and side effect-free alternative to biologicals targeting TNF or other inflammatory mediators.

18.
Toxins (Basel) ; 12(11)2020 11 22.
Article in English | MEDLINE | ID: mdl-33266415

ABSTRACT

Ochratoxin-A (OTA) is a carcinogenic and nephrotoxic mycotoxin, which may cause health problems in humans and animals, and it is a contaminant in foods and feeds. The purpose of the present study is to evaluate the effect of oral OTA exposure on the antioxidant defense and lipid peroxidation in the kidney. In vivo administration of OTA in CD1, male mice (1 or 10 mg/kg body weight in a single oral dose for 24 h and repeated daily oral dose for 72 h or repeated daily oral dose of 0.5 mg/kg bodyweight for 21 days) resulted in a significant elevation of OTA levels in blood plasma. Some histopathological alterations, transcriptional changes in the glutathione system, and oxidative stress response-related genes were also found. In the renal cortex, the activity of the glutathione-system-related enzymes and certain metabolites of the lipid peroxidation (conjugated dienes, trienes, and thiobarbituric reactive substances) also changed.


Subject(s)
Kidney/drug effects , Ochratoxins/toxicity , Animals , Glutathione/metabolism , Kelch-Like ECH-Associated Protein 1/genetics , Kelch-Like ECH-Associated Protein 1/metabolism , Kidney/metabolism , Kidney/pathology , Lipid Peroxidation/drug effects , Male , Mice , Ochratoxins/blood , Oxidative Stress/drug effects , Oxidoreductases/genetics
19.
Behav Brain Res ; 360: 244-254, 2019 03 15.
Article in English | MEDLINE | ID: mdl-30550948

ABSTRACT

Negative affective aspects of opiate abstinence contribute to the persistence of substance abuse. Importantly, interconnected brain areas involved in aversive motivational processes, such as the ventral tegmental area (VTA) and medial prefrontal cortex (mPFC), become activated when animals are confined to withdrawal-paired environments. In the present study, place aversion was elicited in sham and adrenalectomized (ADX) animals by conditioned naloxone-precipitated drug withdrawal following exposure to chronic morphine. qPCR was employed to detect the expression of brain derived neurotrophic factor (Bdnf) and the immediate early genes (IEG) early growth response 1 (Egr-1) and activity-regulated cytoskeletal-associated protein (Arc) mRNAs in the VTA and mPFC at different time points of the conditioned place aversion (CPA) paradigm: after the conditioning phase and after the test phase. Sham + morphine rats exhibited robust CPA, which was impaired in ADX + morphine animals. Egr-1 and Arc were induced in the VTA and mPFC after morphine-withdrawal conditioning phase. Furthermore, Bdnf expression was enhanced in the VTA during the test phase. Bdnf induction seemed to be glucocorticoid-dependent, given that was correlated with HPA axis function and was not observed in morphine-dependent ADX animals. In addition, BDNF regulation and function was opposite in the VTA and mPFC during aversive-withdrawal memory retrieval. Our results suggest that IEGs and BDNF in these brain regions may play key roles in mediating the negative motivational component of opiate withdrawal.


Subject(s)
AIDS-Related Complex/metabolism , Brain-Derived Neurotrophic Factor/metabolism , Brain/metabolism , Early Growth Response Protein 1/metabolism , Glucocorticoids/metabolism , Substance Withdrawal Syndrome/pathology , AIDS-Related Complex/genetics , Adrenalectomy , Animals , Avoidance Learning/drug effects , Brain-Derived Neurotrophic Factor/genetics , Disease Models, Animal , Early Growth Response Protein 1/genetics , Gene Expression Regulation/drug effects , Glucocorticoids/pharmacology , Male , Morphine/adverse effects , Morphine Dependence/complications , Naloxone/therapeutic use , Narcotic Antagonists/therapeutic use , Narcotics/adverse effects , RNA, Messenger/metabolism , Rats , Rats, Wistar , Substance Withdrawal Syndrome/drug therapy , Substance Withdrawal Syndrome/etiology , Substance Withdrawal Syndrome/metabolism
20.
Sci Rep ; 9(1): 6224, 2019 04 17.
Article in English | MEDLINE | ID: mdl-30996341

ABSTRACT

Glucose is a major fuel for the central nervous system and hypoglycemia is a significant homeostatic stressor, which elicits counterregulatory reactions. Hypothalamic metabolic- and stress-related neurons initiate these actions, however recruitment of glia in control such adaptive circuit remain unknown. Groups of fed- and fasted-, vehicle-injected, and fasted + insulin-injected male mice were compared in this study. Bolus insulin administration to fasted mice resulted in hypoglycemia, which increased hypothalamo-pituitary-adrenal (HPA) axis- and sympathetic activity, increased transcription of neuropeptide Y (Npy) and agouti-related peptide (Agrp) in the hypothalamic arcuate nucleus and activated IBA1+ microglia in the hypothalamus. Activated microglia were found in close apposition to hypoglycemia-responsive NPY neurons. Inhibition of microglia by minocycline increased counterregulatory sympathetic response to hypoglycemia. Fractalkine-CX3CR1 signaling plays a role in control of microglia during hypoglycemia, because density and solidity of IBA1-ir profiles was attenuated in fasted, insulin-treated, CX3CR1 KO mice, which was parallel with exaggerated neuropeptide responses and higher blood glucose levels following insulin administration. Hypoglycemia increased Il-1b expression in the arcuate nucleus, while IL-1a/b knockout mice display improved glycemic control to insulin administration. In conclusion, activated microglia in the arcuate nucleus interferes with central counterregulatory responses to hypoglycemia. These results underscore involvement of microglia in hypothalamic regulation of glucose homeostasis.


Subject(s)
Arcuate Nucleus of Hypothalamus/metabolism , Blood Glucose/metabolism , Hypoglycemia/metabolism , Microglia/metabolism , Agouti-Related Protein/metabolism , Animals , Fasting , Homeostasis/genetics , Hypoglycemia/chemically induced , Hypothalamo-Hypophyseal System/metabolism , Insulin/administration & dosage , Insulin/pharmacology , Interleukin-1alpha/genetics , Interleukin-1alpha/metabolism , Interleukin-1beta/genetics , Interleukin-1beta/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Neurons/metabolism , Neuropeptide Y/metabolism , Peptide Fragments/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL