Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
1.
Eur J Nucl Med Mol Imaging ; 50(2): 287-301, 2023 01.
Article in English | MEDLINE | ID: mdl-36271158

ABSTRACT

BACKGROUND: ZED8 is a novel monovalent antibody labeled with zirconium-89 for the molecular imaging of CD8. This work describes nonclinical studies performed in part to provide rationale for and to inform expectations in the early clinical development of ZED8, such as in the studies outlined in clinical trial registry NCT04029181 [1]. METHODS: Surface plasmon resonance, X-ray crystallography, and flow cytometry were used to characterize the ZED8-CD8 binding interaction, its specificity, and its impact on T cell function. Immuno-PET with ZED8 was assessed in huCD8+ tumor-bearing mice and in non-human primates. Plasma antibody levels were measured by ELISA to determine pharmacokinetic parameters, and OLINDA 1.0 was used to estimate radiation dosimetry from image-derived biodistribution data. RESULTS: ZED8 selectively binds to human CD8α at a binding site approximately 9 Å from that of MHCI making mutual interference unlikely. The equilibrium dissociation constant (KD) is 5 nM. ZED8 binds to cynomolgus CD8 with reduced affinity (66 nM) but it has no measurable affinity for rat or mouse CD8. In a series of lymphoma xenografts, ZED8 imaging was able to identify different CD8 levels concordant with flow cytometry. In cynomolgus monkeys with tool compound 89Zr-aCD8v17, lymph nodes were conspicuous by imaging 24 h post-injection, and the pharmacokinetics suggested a flat-fixed first-in-human dose of 4 mg per subject. The whole-body effective dose for an adult human was estimated to be 0.48 mSv/MBq, comparable to existing 89Zr immuno-PET reagents. CONCLUSION: 89Zr immuno-PET with ZED8 appears to be a promising biomarker of tissue CD8 levels suitable for clinical evaluation in cancer patients eligible for immunotherapy.


Subject(s)
Neoplasms , Positron-Emission Tomography , Adult , Humans , Mice , Rats , Animals , Positron-Emission Tomography/methods , Indicators and Reagents/therapeutic use , Tissue Distribution , Neoplasms/therapy , Neoplasms/drug therapy , Immunotherapy/methods , Zirconium/chemistry , CD8-Positive T-Lymphocytes/metabolism , Cell Line, Tumor
3.
Biopharm Drug Dispos ; 37(2): 75-92, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26461173

ABSTRACT

The mechanisms of absorption, distribution, metabolism and elimination of small and large molecule therapeutics differ significantly from one another and can be explored within the framework of a physiologically based pharmacokinetic (PBPK) model. This paper briefly reviews fundamental approaches to PBPK modeling, in which drug kinetics within tissues and organs are explicitly represented using physiologically meaningful parameters. The differences in PBPK models applied to small/large molecule drugs are highlighted, thus elucidating differences in absorption, distribution and elimination properties between these two classes of drugs in a systematic manner. The absorption of small and large molecules differs with respect to their common extravascular routes of delivery (oral versus subcutaneous). The role of the lymphatic system in drug distribution, and the involvement of tissues as sites of elimination (through catabolism and target mediated drug disposition) are unique features of antibody distribution and elimination that differ from small molecules, which are commonly distributed into the tissues but are eliminated primarily by liver metabolism. Fundamental differences exist in the ability to predict human pharmacokinetics based upon preclinical data due to differing mechanisms governing small and large molecule disposition. These differences have influence on the evolving utilization of PBPK modeling in the discovery and development of small and large molecule therapeutics.


Subject(s)
Antibodies, Monoclonal/pharmacokinetics , Models, Biological , Animals , Humans
4.
J Magn Reson Imaging ; 41(1): 132-41, 2015 Jan.
Article in English | MEDLINE | ID: mdl-24753433

ABSTRACT

PURPOSE: Most dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) data are evaluated for individual patients with cohorts analyzed to detect significant changes from baseline values, repeating the process at each posttreatment timepoint. Our study aimed to develop a statistically valid model for the complete time course of DCE-MRI data in a patient cohort. MATERIALS AND METHODS: Data from 10 patients with colorectal cancer liver metastases were analyzed, including two baseline scans and four post-bevacizumab scans. Apparent changes in tumor median K(trans) were adjusted for changes in observed enhancing tumor fraction (EnF) by multiplying K(trans) by EnF (KEnF). A mixed-effects model (MEM) was defined to describe the KEnF time course for all patients simultaneously by assuming a three-parameter indirect response model with model parameters lognormally distributed across patients. RESULTS: The typical cohort time course showed a KEnF reduction to 59% of baseline at 24 hours, returning to 65% of baseline values by day 12. Interpatient variability of model parameters ranged from 11% to 307%. CONCLUSION: The MEM approach has potential for comparing responses at a group level in clinical trials with different doses, schedules, or combination regimens. Furthermore, the KEnF biomarker successfully resolved confounds in interpreting K(trans) arising from therapy induced changes in the volume of enhancing tumor.


Subject(s)
Antibodies, Monoclonal, Humanized/therapeutic use , Colorectal Neoplasms/pathology , Contrast Media , Liver Neoplasms/drug therapy , Liver Neoplasms/secondary , Magnetic Resonance Imaging/methods , Aged , Angiogenesis Inhibitors/therapeutic use , Bevacizumab , Cohort Studies , Female , Gadolinium DTPA , Humans , Image Enhancement , Liver/pathology , Male , Middle Aged
5.
MAbs ; 14(1): 2085535, 2022.
Article in English | MEDLINE | ID: mdl-35867780

ABSTRACT

Advances in antibody engineering have enabled the construction of novel molecular formats in diverse shapes and sizes, providing new opportunities for biologic therapies and expanding the need to understand how various structural aspects affect their distribution properties. To assess the effect of antibody size on systemic pharmacokinetics (PK) and tissue distribution with or without neonatal Fc receptor (FcRn) binding, we evaluated a series of non-mouse-binding anti-glycoprotein D monoclonal antibody formats, including IgG [~150 kDa], one-armed IgG [~100 kDa], IgG-HAHQ (attenuated FcRn binding) [~150 kDa], F(ab')2 [~100 kDa], and F(ab) [~50 kDa]. Tissue-specific concentration-time profiles were corrected for blood content based on vascular volumes and normalized based on interstitial volumes to allow estimation of interstitial concentrations and interstitial:serum concentration ratios. Blood correction demonstrated that the contribution of circulating antibody on total uptake was greatest at early time points and for highly vascularized tissues. Tissue interstitial PK largely mirrored serum exposure profiles. Similar interstitial:serum ratios were obtained for the two FcRn-binding molecules, IgG and one-armed IgG, which reached pseudo-steady-state kinetics in most tissues. For non-FcRn-binding molecules, interstitial:serum ratios changed over time, suggesting that these molecules did not reach steady-state kinetics during the study. Furthermore, concentration-time profiles of both intact and catabolized molecule were measured by a dual tracer approach, enabling quantification of tissue catabolism and demonstrating that catabolism levels were highest for IgG-HAHQ. Overall, these data sets provide insight into factors affecting preclinical distribution and may be useful in estimating interstitial concentrations and/or catabolism in human tissues.


Subject(s)
Antibodies, Monoclonal , Immunoglobulin G , Histocompatibility Antigens Class I , Humans , Infant, Newborn , Kinetics , Receptors, Fc , Tissue Distribution
6.
iScience ; 25(12): 105712, 2022 Dec 22.
Article in English | MEDLINE | ID: mdl-36582483

ABSTRACT

Here, we have developed an automated image processing algorithm for segmenting lungs and individual lung tumors in in vivo micro-computed tomography (micro-CT) scans of mouse models of non-small cell lung cancer and lung fibrosis. Over 3000 scans acquired across multiple studies were used to train/validate a 3D U-net lung segmentation model and a Support Vector Machine (SVM) classifier to segment individual lung tumors. The U-net lung segmentation algorithm can be used to estimate changes in soft tissue volume within lungs (primarily tumors and blood vessels), whereas the trained SVM is able to discriminate between tumors and blood vessels and identify individual tumors. The trained segmentation algorithms (1) significantly reduce time required for lung and tumor segmentation, (2) reduce bias and error associated with manual image segmentation, and (3) facilitate identification of individual lung tumors and objective assessment of changes in lung and individual tumor volumes under different experimental conditions.

7.
Mol Cancer Ther ; 20(10): 2008-2015, 2021 10.
Article in English | MEDLINE | ID: mdl-34315765

ABSTRACT

Advances in antibody engineering have enabled the construction of novel molecular formats in diverse shapes and sizes, providing new opportunities for cancer immunotherapeutic drug discovery while also revealing limitations in knowledge of structure-activity relationships. The current understanding of renal filtration originates largely from data reported for dextrans, IgG, albumin, and selected globular proteins. For a one-armed IgG-based T-cell imaging agent, we observed higher renal signal than typically observed for bivalent IgGs, prompting us to explore the factors governing renal filtration of biologics. We constructed a small representative library of IgG-like formats with varied shapes and hinge flexibilities falling broadly into two categories: branched molecules including bivalent IgG and (scFv)2Fc, and nonbranched molecules including one-armed IgG, one-armed IgG with stacked Fab, and one-armed IgG with a rigid IgA2 hinge. Transmission electron microscopy revealed Y-shaped structures for the branched molecules and pseudo-linear structures for the nonbranched molecules. Single-photon emission CT imaging, autoradiography, and tissue harvest studies demonstrated higher renal uptake and catabolism for nonbranched molecules relative to branched molecules. Among the nonbranched molecules, the one-armed IgG with rigid IgA2 hinge molecule demonstrated higher kidney uptake and decreased systemic exposure relative to molecules with a more flexible hinge. Our results show that differences in shape and hinge flexibility drive the increased glomerular filtration of one-armed relative to bivalent antibodies and highlight the practical advantages of using imaging to assess renal filtration properties. These findings are particularly relevant for T-cell-dependent bispecific molecules, many of which have nonstandard antibody structures.


Subject(s)
Antibodies, Bispecific/immunology , Antibodies, Monoclonal/immunology , Glomerular Filtration Barrier/metabolism , Immunoglobulin G/immunology , Single Photon Emission Computed Tomography Computed Tomography/methods , Viral Envelope Proteins/immunology , Animals , Antibodies, Bispecific/administration & dosage , Antibodies, Monoclonal/administration & dosage , Female , Glomerular Filtration Barrier/drug effects , Humans , Immunoglobulin G/classification , Mice, SCID
8.
Mol Cancer Ther ; 20(10): 1956-1965, 2021 10.
Article in English | MEDLINE | ID: mdl-34253591

ABSTRACT

T-cell-dependent bispecific antibodies (TDB) have been a major advancement in the treatment of cancer, allowing for improved targeting and efficacy for large molecule therapeutics. TDBs are comprised of one arm targeting a surface antigen on a cancer cell and another targeting an engaging surface antigen on a cytotoxic T cell. To impart this function, the antibody must be in a bispecific format as opposed to the more conventional bivalent format. Through in vitro and in vivo studies, we sought to determine the impact of changing antibody valency on solid tumor distribution and catabolism. A bivalent anti-HER2 antibody exhibited higher catabolism than its full-length monovalent binding counterpart in vivo by both invasive tissue harvesting and noninvasive single photon emission computed tomography/X-ray computed tomography imaging despite similar systemic exposures for the two molecules. To determine what molecular factors drove in vivo distribution and uptake, we developed a mechanistic model for binding and catabolism of monovalent and bivalent HER2 antibodies in KPL4 cells. This model suggests that observed differences in cellular uptake of monovalent and bivalent antibodies are caused by the change in apparent affinity conferred by avidity as well as differences in internalization and degradation rates of receptor bound antibodies. To our knowledge, this is the first study to directly compare the targeting abilities of monovalent and bivalent full-length antibodies. These findings may inform diverse antibody therapeutic modalities, including T-cell-redirecting therapies and drug delivery strategies relying upon receptor internalization.


Subject(s)
Antibodies, Bispecific/pharmacology , Antibodies, Bispecific/pharmacokinetics , Antibody Affinity , Breast Neoplasms/drug therapy , Receptor, ErbB-2/antagonists & inhibitors , T-Lymphocytes, Cytotoxic/immunology , Animals , Antibodies, Bispecific/immunology , Apoptosis , Breast Neoplasms/immunology , Breast Neoplasms/pathology , Cell Proliferation , Female , Humans , Mice , Mice, SCID , Receptor, ErbB-2/immunology , Tissue Distribution , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
9.
Magn Reson Med ; 63(5): 1366-75, 2010 May.
Article in English | MEDLINE | ID: mdl-20432307

ABSTRACT

Here, we describe an automated nonparametric method for evaluating gadolinium-diethylene triamine pentaacetic acid (Gd-DTPA) kinetics, based on dynamic contrast-enhanced-MRI scans of glioblastoma patients taken before and after treatment with bevacizumab; no specific model or equation structure is assumed or used. Tumor and venous blood concentration-time profiles are smoothed, using a robust algorithm that removes artifacts due to patient motion, and then deconvolved, yielding an impulse response function. In addition to smoothing, robustness of the deconvolution operation is assured by excluding data that occur prior to the plasma peak; an exhaustive analysis was performed to demonstrate that exclusion of the prepeak plasma data does not significantly affect results. All analysis steps are executed by a single R script that requires blood and tumor curves as the sole input. Statistical moment analysis of the Impulse response function yields the area under the curve (AUC) and mean residence time (MRT). Comparison of deconvolution results to fitted Tofts model parameters suggests that AUCMRT and AUC of the Impulse response function closely approximate fractional clearance from plasma to tissue (K(trans)) and fractional interstitial volume (v(e)). Intervisit variability is shown to be comparable when using the deconvolution method (11% [AUCMRT] and 13%[AUC]) compared to the Tofts model (14%[K(trans)] and 24%[v(e)]). AUC and AUCMRT both exhibit a statistically significant decrease (P < 0.005) 1 day after administration of bevacizumab.


Subject(s)
Antibodies, Monoclonal/therapeutic use , Brain Neoplasms/diagnosis , Brain Neoplasms/drug therapy , Diffusion Magnetic Resonance Imaging/methods , Gadolinium DTPA , Glioblastoma/diagnosis , Glioblastoma/drug therapy , Adult , Algorithms , Antibodies, Monoclonal, Humanized , Antineoplastic Agents/therapeutic use , Bevacizumab , Brain Neoplasms/metabolism , Contrast Media/pharmacokinetics , Female , Gadolinium DTPA/pharmacokinetics , Glioblastoma/metabolism , Humans , Image Enhancement/methods , Image Interpretation, Computer-Assisted/methods , Imaging, Three-Dimensional/methods , Kinetics , Male , Metabolic Clearance Rate , Middle Aged , Pattern Recognition, Automated/methods , Reproducibility of Results , Sensitivity and Specificity , Treatment Outcome
10.
Mol Pharm ; 7(5): 1848-57, 2010 Oct 04.
Article in English | MEDLINE | ID: mdl-20704296

ABSTRACT

Identification of clinically predictive models of disposition kinetics for antibody therapeutics is an ongoing pursuit in drug development. To encourage translation of drug candidates from early research to clinical trials, clinical diagnostic agents may be used to characterize antibody disposition in physiologically relevant preclinical models. TechneScan PYP was employed to measure tissue vascular volumes (V(v)) in healthy mice. Two methods of red blood cell (RBC) labeling were compared: a direct in vivo method that is analogous to a clinical blood pool imaging protocol, and an indirect method in which radiolabeled blood was transfused from donor mice into recipient mice. The indirect method gave higher precision in RBC labeling yields, lower V(v) values in most tissues, and lower (99m)Tc uptake in kidneys and bladder by single photon emission computed tomographic (SPECT) imaging relative to the direct method. Furthermore, the relative influence of each method on the calculated area under the first 7 days of the concentration-time curve (AUC(0-7)) of an IgG in nude mice was assessed using a physiologically based pharmacokinetic model. The model was sensitive to the source of V(v) values, whether obtained from the literature or measured by either method, when used to predict experimental AUC(0-7) values for radiolabeled trastuzumab in healthy murine tissues. In summary, a novel indirect method for preclinical determination of V(v) offered higher precision in RBC labeling efficiency and lower renal uptake of (99m)Tc than the direct method. In addition, these observations emphasize the importance of obtaining accurate physiological parameter values for modeling antibody uptake.


Subject(s)
Blood Volume , Radiopharmaceuticals , Technetium Tc 99m Pyrophosphate , Animals , Antibodies, Monoclonal, Humanized/pharmacokinetics , Blood Vessels/anatomy & histology , Chemistry, Pharmaceutical , Drug Discovery , Erythrocytes/metabolism , Female , Mice , Mice, Nude , Models, Biological , Multimodal Imaging , Pharmacokinetics , Positron-Emission Tomography , Tissue Distribution , Tomography, X-Ray Computed , Trastuzumab
11.
Curr Alzheimer Res ; 17(4): 393-406, 2020.
Article in English | MEDLINE | ID: mdl-32116192

ABSTRACT

BACKGROUND: Anti-amyloid-ß (Aß) monoclonal antibodies (mAbs) are currently in development for treating Alzheimer's disease. OBJECTIVES: To address the complexity of Aß target engagement profiles, improve the understanding of crenezumab Pharmacokinetics (PK) and Aß Pharmacodynamics (PD) in the brain, and facilitate comparison of anti-Aß therapies with different binding characteristics. METHODS: A mechanistic mathematical model was developed describing the distribution, elimination, and binding kinetics of anti-Aß mAbs and Aß (monomeric and oligomeric forms of Aß1-40 and Aß1-42) in the brain, Cerebrospinal Fluid (CSF), and plasma. Physiologically meaningful values were assigned to the model parameters based on the previous data, with remaining parameters fitted to clinical measurements of Aß concentrations in CSF and plasma, and PK/PD data of patients undergoing anti-Aß therapy. Aß target engagement profiles were simulated using a Monte Carlo approach to explore the impact of biological uncertainty in the model parameters. RESULTS: Model-based estimates of in vivo affinity of the antibody to monomeric Aß were qualitatively consistent with the previous data. Simulations of Aß target engagement profiles captured observed mean and variance of clinical PK/PD data. CONCLUSION: This model is useful for comparing target engagement profiles of different anti-Aß therapies and demonstrates that 60 mg/kg crenezumab yields a significant increase in Aß engagement compared with lower doses of solanezumab, supporting the selection of 60 mg/kg crenezumab for phase 3 studies. The model also provides evidence that the delivery of sufficient quantities of mAb to brain interstitial fluid is a limiting step with respect to the magnitude of soluble Aß oligomer neutralization.


Subject(s)
Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Antibodies, Monoclonal, Humanized/metabolism , Brain/metabolism , Drug Delivery Systems/methods , Models, Theoretical , Peptide Fragments/metabolism , Alzheimer Disease/drug therapy , Amyloid beta-Peptides/antagonists & inhibitors , Animals , Antibodies, Monoclonal, Humanized/administration & dosage , Brain/drug effects , Humans , Peptide Fragments/antagonists & inhibitors
12.
Mol Cancer Ther ; 19(4): 1052-1058, 2020 04.
Article in English | MEDLINE | ID: mdl-32024685

ABSTRACT

Full-length antibodies lack ideal pharmacokinetic properties for rapid targeted imaging, prompting the pursuit of smaller peptides and fragments. Nevertheless, studying the disposition properties of antibody-based imaging agents can provide critical insight into the pharmacology of their therapeutic counterparts, particularly for those coupled with potent payloads. Here, we evaluate modulation of binding to the neonatal Fc receptor (FcRn) as a protein engineering-based pharmacologic strategy to minimize the overall blood pool background with directly labeled antibodies and undesirable systemic click reaction of radiolabeled tetrazine with circulating pretargeted trans-cyclooctene (TCO)-modified antibodies. Noninvasive SPECT imaging of mice bearing HER2-expressing xenografts was performed both directly (111In-labeled antibody) and indirectly (pretargeted TCO-modified antibody followed by 111In-labeled tetrazine). Pharmacokinetic modulation of antibodies was achieved by two distinct methods: Fc engineering to reduce binding affinity to FcRn, and delayed administration of an antibody that competes with binding to FcRn. Tumor imaging with directly labeled antibodies was feasible in the absence of FcRn binding, rapidly attaining high tumor-to-blood ratios, but accompanied by moderate liver and spleen uptake. Pretargeted imaging of tumors with non-FcRn-binding antibody was also feasible, but systemic click reaction still occurred, albeit at lower levels than with parental antibody. Our findings demonstrate that FcRn binding impairment of full-length IgG antibodies moderately lowers tumor accumulation of radioactivity, and shifts background activity from blood pool to liver and spleen. Furthermore, reduction of FcRn binding did not eliminate systemic click reaction, but yielded greater improvements in tumor-to-blood ratio when imaging with directly labeled antibodies than with pretargeting.


Subject(s)
Antibodies, Monoclonal/chemistry , Antibodies, Monoclonal/pharmacology , Breast Neoplasms/drug therapy , Histocompatibility Antigens Class I/metabolism , Radiopharmaceuticals/metabolism , Receptors, Fc/metabolism , Animals , Breast Neoplasms/diagnostic imaging , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Click Chemistry , Female , Image Processing, Computer-Assisted , Mice , Mice, SCID , Receptor, ErbB-2/metabolism , Single Photon Emission Computed Tomography Computed Tomography
13.
J Nucl Med ; 50(2): 250-8, 2009 Feb.
Article in English | MEDLINE | ID: mdl-19164244

ABSTRACT

UNLABELLED: Radiolabeled arginine-glycine-aspartate (RGD) peptides are increasingly used in preclinical and clinical studies to assess the expression and function of the alphavbeta3 integrin, a cellular adhesion molecule involved in angiogenesis and tumor metastasis formation. To better understand the PET signal obtained with radiolabeled RGD peptides, we have constructed a compartmental model that can describe the time-activity curves in tumors after an intravenous injection. METHODS: We analyzed 60-min dynamic PET scans obtained with 64Cu-1,4,7,10-tetraazacyclododecane-N,N',N'',N'''-tetraacetic acid (DOTA)-RGD in 20 tumor-bearing severe combined immunodeficient (SCID) mice after a bolus dose (18,500 kBq [500 microCi]), using variations of the standard 2-compartment (4k) tissue model augmented with a compartment for irreversible tracer internalization. alphavbeta3 binding sites were blocked in 5 studies with a coinjection of cold peptide. In addition, 20 h after injection, static PET was performed on 9 of 20 mice. We fitted 2k (k3=k4=0), 3k (k4=0), 4k, and 4kc (k4=constant) models to the PET data and used several criteria to determine the best model structure for describing 64Cu-DOTA-RGD kinetics in mice. Akaike information criteria (AIC), calculated from model fits and the ability of each model to predict tumor concentration 20 h after tracer injection, were considered. RESULTS: The 4kc model has the best profile in terms of AIC values and predictive ability, and a constant k4 is further supported by Logan-Patlak analysis and results from iterative Bayesian parameter estimation. The internalization compartment allows quantification of the putative tracer internalization rate for each study, which is estimated here to be approximately an order of magnitude less than k3 and thus does not confound the apparent specific binding of the tracer to the tumor integrin during the first 60 min of the scan. Analysis of specific (S) and nonspecific or nondisplaceable (ND) binding using fitted parameter values showed that the 4kc model provided expected results when comparing alphavbeta3 blocked and nonblocked studies. That is, specific volume of distribution, [VS=(K1k3)/(k2k4)], is much higher than is nondisplaceable volume of distribution, [VND=(K1/k2)], in nonblocking studies (2.2+/-0.6 vs. 0.85+/-0.14); VS and VND are about the same in the blocking studies (0.46+/-1.6 vs. 0.56+/-0.09). Also, the ratio of static tumor and plasma measurements at 60 and 10 min [CT(60)/CP(10)] is highly correlated (RS=0.92) to tumor VS. CONCLUSION: We have developed and tested a compartmental model for use with the 64Cu-DOTA-RGD PET tracer and demonstrated its potential as a tool for analysis and design of preclinical and clinical imaging studies.


Subject(s)
Copper Radioisotopes , Heterocyclic Compounds, 1-Ring , Models, Biological , Neoplasms, Experimental/diagnostic imaging , Oligopeptides/therapeutic use , Radiopharmaceuticals , Animals , Cell Line, Tumor , Copper Radioisotopes/pharmacokinetics , Heterocyclic Compounds, 1-Ring/pharmacokinetics , Humans , Integrin alphaVbeta3/metabolism , Male , Mice , Mice, SCID , Neoplasm Transplantation , Neoplasms, Experimental/metabolism , Oligopeptides/pharmacokinetics , Positron-Emission Tomography , Radiopharmaceuticals/pharmacokinetics , Tomography, X-Ray Computed
14.
Neoplasia ; 21(10): 1036-1050, 2019 10.
Article in English | MEDLINE | ID: mdl-31521051

ABSTRACT

Cancer immunotherapies have demonstrated durable responses in a range of different cancers. However, only a subset of patients responds to these therapies. We set out to test if non-invasive imaging of tumor perfusion and vascular inflammation may be able to explain differences in T-cell infiltration in pre-clinical tumor models, relevant for treatment outcomes. Tumor perfusion and vascular cell adhesion molecule (VCAM-1) density were quantified using magnetic resonance imaging (MRI) and correlated with infiltration of adoptively transferred and endogenous T-cells. MRI biomarkers were evaluated for their ability to detect tumor rejection 3 days after T-cell transfer. Baseline levels of these markers were used to assess their ability to predict PD-L1 treatment response. We found correlations between MRI-derived VCAM-1 density and infiltration of endogenous or adoptively transferred T-cells in some preclinical tumor models. Blocking T-cell binding to endothelial cell adhesion molecules (VCAM-1/ICAM) prevented T-cell mediated tumor rejection. Tumor rejection could be detected 3 days after adoptive T-cell transfer prior to tumor volume changes by monitoring the extracellular extravascular volume fraction. Imaging tumor perfusion and VCAM-1 density before treatment initiation was able to predict the response of MC38 tumors to PD-L1 blockade. These results indicate that MRI based assessment of tumor perfusion and VCAM-1 density can inform about the permissibility of the tumor vasculature for T-cell infiltration which may explain some of the observed variance in treatment response for cancer immunotherapies.


Subject(s)
Lymphocytes, Tumor-Infiltrating/metabolism , Neoplasms/diagnosis , Neoplasms/metabolism , Perfusion Imaging , T-Lymphocytes/metabolism , Vascular Cell Adhesion Molecule-1/metabolism , Animals , Antineoplastic Agents, Immunological/pharmacology , B7-H1 Antigen/antagonists & inhibitors , B7-H1 Antigen/metabolism , Biomarkers , Cell Adhesion Molecules/metabolism , Cell Line, Tumor , Disease Models, Animal , Endothelial Cells/metabolism , Female , Lymphocytes, Tumor-Infiltrating/immunology , Lymphocytes, Tumor-Infiltrating/pathology , Magnetic Resonance Imaging , Mice , Neoplasms/drug therapy , Neoplasms/immunology , Positron-Emission Tomography , T-Lymphocytes/immunology , T-Lymphocytes/pathology
15.
Oncotarget ; 10(58): 6234-6244, 2019 Oct 22.
Article in English | MEDLINE | ID: mdl-31692898

ABSTRACT

TENB2, a transmembrane proteoglycan protein, is a promising target for antibody drug conjugate (ADC) therapy due to overexpression in human prostate tumors and rapid internalization. We previously characterized how predosing with parental anti-TENB2 monoclonal antibody (mAb) at 1 mg/kg in a patient-derived LuCap77 explant model with high (3+) TENB2 expression could (i) block target-mediated intestinal uptake of tracer (& 0.1 mg/kg) levels of radiolabeled anti-TENB2-monomethyl auristatin E ADC while preserving tumor uptake, and (ii) maintain efficacy relative to ADC alone. Here, we systematically revisit this strategy to evaluate the effects of predosing on tumor uptake and efficacy in LuCap96.1, a low TENB2-expressing (1+) patient-derived model that is more responsive to ADC therapy than LuCap77. Importantly, rather than using tracer (& 0.1 mg/kg) levels, radiolabeled ADC tumor uptake was assessed at 1 mg/kg - one of the doses evaluated in the tumor growth inhibition study - in an effort to bridge tissue distribution (PK) with efficacy (PD). Predosing with mAb up to 1 mg/kg had no effect on efficacy. These findings warrant further investigations to determine whether predosing prior to ADC therapy might improve therapeutic index by preventing ADC disposition and possible toxicological liabilities in antigen-expressing healthy tissues.

16.
Clin Transl Sci ; 11(3): 296-304, 2018 05.
Article in English | MEDLINE | ID: mdl-29351372

ABSTRACT

CD20 is a cell-surface receptor expressed by healthy and neoplastic B cells and is a well-established target for biologics used to treat B-cell malignancies. Pharmacokinetic (PK) and pharmacodynamic (PD) data for the anti-CD20/CD3 T-cell-dependent bispecific antibody BTCT4465A were collected in transgenic mouse and nonhuman primate (NHP) studies. Pronounced nonlinearity in drug elimination was observed in the murine studies, and time-varying, nonlinear PK was observed in NHPs, where three empirical drug elimination terms were identified using a mixed-effects modeling approach: i) a constant nonsaturable linear clearance term (7 mL/day/kg); ii) a rapidly decaying time-varying, linear clearance term (t½  = 1.6 h); and iii) a slowly decaying time-varying, nonlinear clearance term (t½  = 4.8 days). The two time-varying drug elimination terms approximately track with time scales of B-cell depletion and T-cell migration/expansion within the central blood compartment. The mixed-effects NHP model was scaled to human and prospective clinical simulations were generated.


Subject(s)
Antibodies, Bispecific/pharmacology , T-Lymphocytes/immunology , Animals , Antigens, CD20/immunology , CD3 Complex/antagonists & inhibitors , CD3 Complex/immunology , Cell Movement/drug effects , Drug Evaluation, Preclinical , Female , Humans , Macaca fascicularis , Male , Mice , Mice, Transgenic , T-Lymphocytes/drug effects , T-Lymphocytes/metabolism
17.
AAPS J ; 20(6): 107, 2018 10 08.
Article in English | MEDLINE | ID: mdl-30298434

ABSTRACT

We previously performed a comparative assessment of tissue-level vascular physiological parameters in mice and rats, two of the most commonly utilized species in translational drug development. The present work extends this effort to non-human primates by measuring tissue- and organ-level vascular volumes (Vv), interstitial volumes (Vi), and blood flow rates (Q) in cynomolgus monkeys. These measurements were accomplished by red blood cell labeling, extracellular marker infusion, and rubidium chloride bolus distribution, respectively, the same methods used in previous rodent measurements. In addition, whole-body blood volumes (BV) were determined across species. The results demonstrate that Vv, Vi, and Q, measured using our methods scale approximately by body weight across mouse, rat, and monkey in the tissues considered here, where allometric analysis allowed extrapolation to human parameters. Significant differences were observed between the values determined in this study and those reported in the literature, including Vv in muscle, brain, and skin and Q in muscle, adipose, heart, thymus, and spleen. The impact of these differences for selected tissues was evaluated via sensitivity analysis using a physiologically based pharmacokinetic model. The blood-brain barrier in monkeys was shown to be more impervious to an infused radioactive tracer, indium-111-pentetate, than in mice or rats. The body weight-normalized total BV measured in monkey agreed well with previously measured value in rats but was lower than that in mice. These findings have important implications for the common practice of scaling physiological parameters from rodents to primates in translational pharmacology.


Subject(s)
Drug Development/methods , Models, Animal , Pharmaceutical Research/methods , Animals , Blood Flow Velocity/physiology , Blood Volume/physiology , Blood-Brain Barrier/metabolism , Body Weight/physiology , Female , Macaca fascicularis/physiology , Male , Mice/physiology , Radiopharmaceuticals/administration & dosage , Radiopharmaceuticals/pharmacokinetics , Rats/physiology , Species Specificity , Tissue Distribution
18.
MAbs ; 10(8): 1269-1280, 2018.
Article in English | MEDLINE | ID: mdl-30199303

ABSTRACT

Antibody pretargeting is a promising strategy for improving molecular imaging, wherein the separation in time of antibody targeting and radiolabeling can lead to rapid attainment of high contrast, potentially increased sensitivity, and reduced patient radiation exposure. The inverse electron demand Diels-Alder 'click' reaction between trans-cyclooctene (TCO) conjugated antibodies and radiolabeled tetrazines presents an ideal platform for pretargeted imaging due to rapid reaction kinetics, bioorthogonality, and potential for optimization of both slow and fast clearing components. Herein, we evaluated a series of anti-human epidermal growth factor receptor 2 (HER2) pretargeting antibodies containing distinct molar ratios of site-specifically incorporated TCO. The effect of stoichiometry on tissue distribution was assessed for pretargeting TCO-modified antibodies (monitored by 125I) and subsequent accumulation of an 111In-labeled tetrazine in a therapeutically relevant HER2+tumor-bearing mouse model. Single photon emission computed tomography (SPECT) imaging was also employed to assess tumor imaging at various TCO-to-monoclonal antibody (mAb) ratios. Increasing TCO-to-mAb molar ratios correlated with increased in vivo click reaction efficiency evident by increased tumor distribution and systemic exposure of 111In-labeled tetrazines. The pharmacokinetics of TCO-modified antibodies did not vary with stoichiometry. Pretargeted SPECT imaging of HER2-expressing tumors using 111In-labeled tetrazine demonstrated robust click reaction with circulating antibody at ~2 hours and good tumor delineation for both the 2 and 6 TCO-to-mAb ratio variants at 24 hours, consistent with a limited cell-surface pool of pretargeted antibody and benefit from further distribution and internalization. To our knowledge, this represents the first reported systematic analysis of how pretargeted imaging is affected solely by variation in click reaction stoichiometry through site-specific conjugation chemistry.


Subject(s)
Antibodies, Monoclonal/chemistry , Click Chemistry/methods , Immunoconjugates/chemistry , Tomography, Emission-Computed, Single-Photon/methods , Animals , Cell Line, Tumor , Heterocyclic Compounds, 1-Ring/chemistry , Humans , Immunoconjugates/pharmacokinetics , Immunoconjugates/pharmacology , Isotope Labeling/methods , Mice , Neoplasms/diagnostic imaging , Neoplasms/metabolism , Neoplasms/therapy , Radioimmunotherapy/methods , Receptor, ErbB-2/immunology , Receptor, ErbB-2/metabolism , Tissue Distribution , Xenograft Model Antitumor Assays
19.
J Nucl Med ; 48(12): 2037-45, 2007 Dec.
Article in English | MEDLINE | ID: mdl-18006615

ABSTRACT

UNLABELLED: Derivation of the plasma time-activity curve in murine small-animal PET studies is a challenging task when tracers that are sequestered by the myocardium are used, because plasma time-activity curve estimation usually involves drawing a region of interest within the area of the reconstructed image that corresponds to the left ventricle (LV) of the heart. The small size of the LV relative to the resolution of the small-animal PET system, coupled with spillover effects from adjacent myocardial pixels, makes this method reliable only for the earliest frames of the scan. We sought to develop a method for plasma time-activity curve estimation based on a model of tracer kinetics in blood, muscle, and liver. METHODS: Sixteen C57BL/6 mice were injected with (18)F-FDG, and approximately 15 serial blood samples were taken from the femoral artery via a surgically inserted catheter during 60-min small-animal PET scans. Image data were reconstructed by use of filtered backprojection with CT-based attenuation correction. We constructed a 5-compartment model designed to predict the plasma time-activity curve of (18)F-FDG by use of data from a minimum of 2 blood samples and the dynamic small-animal PET scan. The plasma time-activity curve (TACp) was assumed to have 4 exponential components (TAC(P)=A(1)e(lambda(1)t)+A(2)e(lambda(2)t)+A(3)e(lambda(3)t)-(A(1)+A(2)+A(3))e(lambda(4)t)) based on the serial blood samples. Using Bayesian constraints, we fitted 2-compartment submodels of muscle and liver to small-animal PET data for these organs and simultaneously fitted the input (forcing) function to early small-animal PET LV data and 2 blood samples (approximately 10 min and approximately 1 h). RESULTS: The area under the estimated plasma time-activity curve had an overall Spearman correlation of 0.99 when compared with the area under the gold standard plasma time-activity curve calculated from multiple blood samples. Calculated organ uptake rates (Patlak K(i)) based on the predicted plasma time-activity curve had a correlation of approximately 0.99 for liver, muscle, myocardium, and brain when compared with those based on the gold standard plasma time-activity curve. The model was also able to accurately predict the plasma time-activity curve under experimental conditions that resulted in different rates of clearance of the tracer from blood. CONCLUSION: We have developed a robust method for accurately estimating the plasma time-activity curve of (18)F-FDG by use of dynamic small-animal PET data and 2 blood samples.


Subject(s)
Fluorodeoxyglucose F18 , Positron-Emission Tomography/methods , Animals , Area Under Curve , Bayes Theorem , Fluorodeoxyglucose F18/blood , Mice , Mice, Inbred C57BL , Models, Biological
20.
Mol Cancer Ther ; 5(6): 1550-8, 2006 Jun.
Article in English | MEDLINE | ID: mdl-16818514

ABSTRACT

Monoclonal antibodies (mAb) are being used at an increasing rate in the treatment of cancer, with current efforts focused on developing engineered antibodies that exhibit optimal biodistribution profiles for imaging and/or radioimmunotherapy. We recently developed the single-chain Fv-Fc (scFv-Fc) mAb, which consists of a single-chain antibody Fv fragment (light-chain and heavy-chain variable domains) coupled to the IgG1 Fc region. Point mutations that attenuate binding affinity to FcRn were introduced into the Fc region of the wild-type scFv-Fc mAb, resulting in several new antibodies, each with a different half-life. Here, we describe the construction of a two-tiered physiologically based pharmacokinetic model capable of simulating the apparent biodistribution of both (111)In- and (125)I-labeled scFv-Fc mAbs, where (111)In-labeled metabolites from degraded (111)In-labeled mAbs tend to become trapped within the lysosomal compartment, whereas free (125)I from degraded (125)I-labeled mAbs is quickly eliminated via the urinary pathway. The different concentration-time profiles of (111)In- and (125)I-labeled mAbs permits estimation of the degradation capacity of each organ and elucidates the dependence of cumulative degradation in liver, muscle, and skin on FcRn affinity and tumor mass. Liver is estimated to account for approximately 50% of all degraded mAb when tumor is small (approximately 0.1 g) and drops to about 35% when tumor mass is larger (approximately 0.3 g). mAb degradation in residual carcass (primarily skin and muscle) decreases from approximately 45% to 16% as FcRn affinity of the three mAb variants under consideration increases. In addition, elimination of a small amount of mAb in the kidneys is shown to be required for a successful fit of model to data.


Subject(s)
Antibodies, Monoclonal/pharmacokinetics , Immunoconjugates/pharmacokinetics , Immunoglobulin Fc Fragments/metabolism , Immunoglobulin Fragments/metabolism , Models, Biological , Animals , Female , Indium Radioisotopes/pharmacokinetics , Iodine Radioisotopes/pharmacokinetics , Metabolic Clearance Rate , Mice , Mice, Nude , Organ Specificity , Tissue Distribution
SELECTION OF CITATIONS
SEARCH DETAIL