Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 254
Filter
1.
Cell ; 181(1): 189-206, 2020 04 02.
Article in English | MEDLINE | ID: mdl-32220311

ABSTRACT

Human immunodeficiency virus type 1 (HIV-1) infection persists despite years of antiretroviral therapy (ART). To remove the stigma and burden of chronic infection, approaches to eradicate or cure HIV infection are desired. Attempts to augment ART with therapies that reverse viral latency, paired with immunotherapies to clear infection, have advanced into the clinic, but the field is still in its infancy. We review foundational studies and highlight new insights in HIV cure research. Together with advances in ART delivery and HIV prevention strategies, future therapies that clear HIV infection may relieve society of the affliction of the HIV pandemic.


Subject(s)
Anti-HIV Agents/therapeutic use , Chronic Disease/therapy , HIV Infections/therapy , HIV-1/drug effects , Immunotherapy/methods , Virus Latency/drug effects , Animals , Haplorhini , Humans
2.
Cell ; 175(2): 387-399.e17, 2018 10 04.
Article in English | MEDLINE | ID: mdl-30270043

ABSTRACT

HIV-1 broadly neutralizing antibodies (bnAbs) are difficult to induce with vaccines but are generated in ∼50% of HIV-1-infected individuals. Understanding the molecular mechanisms of host control of bnAb induction is critical to vaccine design. Here, we performed a transcriptome analysis of blood mononuclear cells from 47 HIV-1-infected individuals who made bnAbs and 46 HIV-1-infected individuals who did not and identified in bnAb individuals upregulation of RAB11FIP5, encoding a Rab effector protein associated with recycling endosomes. Natural killer (NK) cells had the highest differential expression of RAB11FIP5, which was associated with greater dysregulation of NK cell subsets in bnAb subjects. NK cells from bnAb individuals had a more adaptive/dysfunctional phenotype and exhibited impaired degranulation and cytokine production that correlated with RAB11FIP5 transcript levels. Moreover, RAB11FIP5 overexpression modulated the function of NK cells. These data suggest that NK cells and Rab11 recycling endosomal transport are involved in regulation of HIV-1 bnAb development.


Subject(s)
Adaptor Proteins, Signal Transducing/immunology , Antibodies, Neutralizing/immunology , HIV Infections/immunology , AIDS Vaccines/immunology , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/physiology , Adult , B-Lymphocytes/immunology , Cell Line , Cohort Studies , Female , Gene Expression Profiling/methods , HIV Antibodies/immunology , HIV Infections/physiopathology , HIV-1/pathogenicity , Humans , Killer Cells, Natural/immunology , Killer Cells, Natural/physiology , Male , Middle Aged
3.
Cell ; 158(3): 481-91, 2014 Jul 31.
Article in English | MEDLINE | ID: mdl-25065977

ABSTRACT

Development of strategies for induction of HIV-1 broadly neutralizing antibodies (bnAbs) by vaccines is a priority. Determining the steps of bnAb induction in HIV-1-infected individuals who make bnAbs is a key strategy for immunogen design. Here, we study the B cell response in a bnAb-producing individual and report cooperation between two B cell lineages to drive bnAb development. We isolated a virus-neutralizing antibody lineage that targeted an envelope region (loop D) and selected virus escape mutants that resulted in both enhanced bnAb lineage envelope binding and escape mutant neutralization-traits associated with increased B cell antigen drive. Thus, in this individual, two B cell lineages cooperated to induce the development of bnAbs. Design of vaccine immunogens that simultaneously drive both helper and broadly neutralizing B cell lineages may be important for vaccine-induced recapitulation of events that transpire during the maturation of neutralizing antibodies in HIV-1-infected individuals.


Subject(s)
AIDS Vaccines/chemistry , AIDS Vaccines/immunology , Antibodies, Neutralizing/immunology , HIV Antibodies/immunology , HIV-1/physiology , Amino Acid Sequence , B-Lymphocytes/immunology , Immune Evasion , Models, Molecular , Molecular Sequence Data , Mutation , Sequence Alignment , env Gene Products, Human Immunodeficiency Virus/genetics , env Gene Products, Human Immunodeficiency Virus/immunology
4.
Nature ; 605(7911): 640-652, 2022 05.
Article in English | MEDLINE | ID: mdl-35361968

ABSTRACT

The global emergence of many severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants jeopardizes the protective antiviral immunity induced after infection or vaccination. To address the public health threat caused by the increasing SARS-CoV-2 genomic diversity, the National Institute of Allergy and Infectious Diseases within the National Institutes of Health established the SARS-CoV-2 Assessment of Viral Evolution (SAVE) programme. This effort was designed to provide a real-time risk assessment of SARS-CoV-2 variants that could potentially affect the transmission, virulence, and resistance to infection- and vaccine-induced immunity. The SAVE programme is a critical data-generating component of the US Government SARS-CoV-2 Interagency Group to assess implications of SARS-CoV-2 variants on diagnostics, vaccines and therapeutics, and for communicating public health risk. Here we describe the coordinated approach used to identify and curate data about emerging variants, their impact on immunity and effects on vaccine protection using animal models. We report the development of reagents, methodologies, models and notable findings facilitated by this collaborative approach and identify future challenges. This programme is a template for the response to rapidly evolving pathogens with pandemic potential by monitoring viral evolution in the human population to identify variants that could reduce the effectiveness of countermeasures.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Biological Evolution , COVID-19 Vaccines , Humans , National Institute of Allergy and Infectious Diseases (U.S.) , Pandemics/prevention & control , Pharmacogenomic Variants , SARS-CoV-2/genetics , SARS-CoV-2/pathogenicity , United States/epidemiology , Virulence
5.
PLoS Pathog ; 20(6): e1011569, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38900807

ABSTRACT

Antibodies perform both neutralizing and non-neutralizing effector functions that protect against certain pathogen-induced diseases. A human antibody directed at the SARS-CoV-2 Spike N-terminal domain (NTD), DH1052, was recently shown to be non-neutralizing, yet it protected mice and cynomolgus macaques from severe disease. The mechanisms of NTD non-neutralizing antibody-mediated protection are unknown. Here we show that Fc effector functions mediate NTD non-neutralizing antibody (non-nAb) protection against SARS-CoV-2 MA10 viral challenge in mice. Though non-nAb prophylactic infusion did not suppress infectious viral titers in the lung as potently as neutralizing antibody (nAb) infusion, disease markers including gross lung discoloration were similar in nAb and non-nAb groups. Fc functional knockout substitutions abolished non-nAb protection and increased viral titers in the nAb group. Fc enhancement increased non-nAb protection relative to WT, supporting a positive association between Fc functionality and degree of protection from SARS-CoV-2 infection. For therapeutic administration of antibodies, non-nAb effector functions contributed to virus suppression and lessening of lung discoloration, but the presence of neutralization was required for optimal protection from disease. This study demonstrates that non-nAbs can utilize Fc-mediated mechanisms to lower viral load and prevent lung damage due to coronavirus infection.


Subject(s)
Antibodies, Neutralizing , Antibodies, Viral , COVID-19 , Immunoglobulin Fc Fragments , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Animals , SARS-CoV-2/immunology , Mice , COVID-19/immunology , COVID-19/prevention & control , COVID-19/virology , Antibodies, Viral/immunology , Antibodies, Neutralizing/immunology , Immunoglobulin Fc Fragments/immunology , Spike Glycoprotein, Coronavirus/immunology , Humans , Female , Protein Domains/immunology , Viral Load , Lung/virology , Lung/immunology , Lung/pathology
6.
PLoS Pathog ; 19(5): e1011359, 2023 05.
Article in English | MEDLINE | ID: mdl-37256916

ABSTRACT

The modestly efficacious HIV-1 vaccine regimen (RV144) conferred 31% vaccine efficacy at 3 years following the four-shot immunization series, coupled with rapid waning of putative immune correlates of decreased infection risk. New strategies to increase magnitude and durability of protective immunity are critically needed. The RV305 HIV-1 clinical trial evaluated the immunological impact of a follow-up boost of HIV-1-uninfected RV144 recipients after 6-8 years with RV144 immunogens (ALVAC-HIV alone, AIDSVAX B/E gp120 alone, or ALVAC-HIV + AIDSVAX B/E gp120). Previous reports demonstrated that this regimen elicited higher binding, antibody Fc function, and cellular responses than the primary RV144 regimen. However, the impact of the canarypox viral vector in driving antibody specificity, breadth, durability and function is unknown. We performed a follow-up analysis of humoral responses elicited in RV305 to determine the impact of the different booster immunogens on HIV-1 epitope specificity, antibody subclass, isotype, and Fc effector functions. Importantly, we observed that the ALVAC vaccine component directly contributed to improved breadth, function, and durability of vaccine-elicited antibody responses. Extended boosts in RV305 increased circulating antibody concentration and coverage of heterologous HIV-1 strains by V1V2-specific antibodies above estimated protective levels observed in RV144. Antibody Fc effector functions, specifically antibody-dependent cellular cytotoxicity and phagocytosis, were boosted to higher levels than was achieved in RV144. V1V2 Env IgG3, a correlate of lower HIV-1 risk, was not increased; plasma Env IgA (specifically IgA1), a correlate of increased HIV-1 risk, was elevated. The quality of the circulating polyclonal antibody response changed with each booster immunization. Remarkably, the ALVAC-HIV booster immunogen induced antibody responses post-second boost, indicating that the viral vector immunogen can be utilized to selectively enhance immune correlates of decreased HIV-1 risk. These results reveal a complex dynamic of HIV-1 immunity post-vaccination that may require careful balancing to achieve protective immunity in the vaccinated population. Trial registration: RV305 clinical trial (ClinicalTrials.gov number, NCT01435135). ClinicalTrials.gov Identifier: NCT00223080.


Subject(s)
AIDS Vaccines , HIV Infections , HIV Seropositivity , HIV-1 , Humans , Antibody Formation , HIV Infections/prevention & control , Immunization, Secondary/methods , Antibody Specificity , HIV Antibodies , HIV Envelope Protein gp120
7.
J Virol ; 97(2): e0163522, 2023 02 28.
Article in English | MEDLINE | ID: mdl-36749076

ABSTRACT

Understanding the dynamics of early immune responses to HIV-1 infection, including the evolution of initial neutralizing and antibody-dependent cellular cytotoxicity (ADCC)-mediating antibodies, will inform HIV vaccine design. In this study, we assess the development of autologous neutralizing antibodies (ANAbs) against founder envelopes (Envs) from 18 participants with HIV-1 CRF01_AE acute infection. The timing of ANAb development directly associated with the magnitude of the longitudinal ANAb response. Participants that developed ANAbs within 6 months of infection had significantly higher ANAb responses at 1 year (50% inhibitory concentration [IC50] geometric mean titer [GMT] = 2,010 versus 184; P = 0.001) and 2 years (GMT = 3,479 versus 340; P = 0.015), compared to participants that developed ANAb responses after 6 months. Participants with later development of ANAb tended to develop an earlier, potent heterologous tier 1 (92TH023) neutralizing antibody (NAb) response (P = 0.049). CRF01_AE founder Env V1V2 loop lengths correlated indirectly with the timing (P = 0.002, r = -0.675) and directly with magnitude (P = 0.005, r = 0.635) of ANAb responses; Envs with longer V1V2 loop lengths elicited earlier and more potent ANAb responses. While ANAb responses did not associate with viral load, the viral load set point correlated directly with neutralization of the heterologous 92TH023 strain (P = 0.007, r = 0.638). In contrast, a striking inverse correlation was observed between viral load set point and peak ADCC against heterologous 92TH023 Env strain (P = 0.0005, r = -0.738). These data indicate that specific antibody functions can be differentially related to viral load set point and may affect HIV-1 pathogenesis. Exploiting Env properties, such as V1V2 length, could facilitate development of subtype-specific vaccines that elicit more effective immune responses and improved protection. IMPORTANCE Development of an effective HIV-1 vaccine will be facilitated by better understanding the dynamics between the founder virus and the early humoral responses. Variations between subtypes may influence the evolution of immune responses and should be considered as we strive to understand these dynamics. In this study, autologous founder envelope neutralization and heterologous functional humoral responses were evaluated after acute infection by HIV-1 CRF01_AE, a subtype that has not been thoroughly characterized. The evolution of these humoral responses was assessed in relation to envelope characteristics, magnitude of elicited immune responses, and viral load. Understanding immune parameters in natural infection will improve our understanding of protective responses and aid in the development of immunogens that elicit protective functional antibodies. Advancing our knowledge of correlates of positive clinical outcomes should lead to the design of more efficacious vaccines.


Subject(s)
Antibodies, Neutralizing , Antibody Formation , HIV Antibodies , HIV Infections , env Gene Products, Human Immunodeficiency Virus , Humans , env Gene Products, Human Immunodeficiency Virus/genetics , env Gene Products, Human Immunodeficiency Virus/immunology , HIV Infections/immunology , HIV-1
8.
J Infect Dis ; 227(8): 939-950, 2023 04 18.
Article in English | MEDLINE | ID: mdl-36348617

ABSTRACT

BACKGROUND: Developing a cross-clade, globally effective HIV vaccine remains crucial for eliminating HIV. METHODS: This placebo-controlled, double-blind, phase 1/2a study enrolled healthy HIV-uninfected adults at low risk for HIV infection. They were randomized (1:4:1) to receive 4 doses of an adenovirus 26-based HIV-1 vaccine encoding 2 mosaic Gag and Pol, and 2 mosaic Env proteins plus adjuvanted clade C gp140 (referred to here as clade C regimen), bivalent protein regimen (clade C regimen plus mosaic gp140), or placebo. Primary end points were safety and antibody responses. RESULTS: In total 152/155 participants (clade C, n = 26; bivalent protein, n = 103; placebo, n = 26) received ≥1 injection. The highest adverse event (AE) severity was grade 3 (local pain/tenderness, 12%, 2%, and 0% of the respective groups; solicited systemic AEs, 19%, 15%, 0%). HIV-1 mosaic gp140-binding antibody titers were 79 595 ELISA units (EU)/mL and 137 520 EU/mL in the clade C and bivalent protein groups (P < .001) after dose 4 and 16 862 EU/mL and 25 162 EU/mL 6 months later. Antibody response breadth against clade C gp140 and clade C/non-clade C gp120 was highest in the bivalent protein group. CONCLUSIONS: Adding mosaic gp140 to the clade C regimen increased and broadened the elicited immune response without compromising safety or clade C responses. Clinical Trials Registration. NCT02935686.


Subject(s)
AIDS Vaccines , HIV Infections , HIV-1 , Adult , Humans , Genetic Vectors , HIV Antibodies , HIV Infections/prevention & control , Immunogenicity, Vaccine
9.
J Infect Dis ; 2023 Oct 05.
Article in English | MEDLINE | ID: mdl-37795976

ABSTRACT

BACKGROUND: HVTN 120 is a phase 1/2a randomized double-blind placebo-controlled HIV vaccine trial that evaluated the safety and immunogenicity of ALVAC-HIV (vCP2438) and MF59- or AS01B-adjuvanted bivalent subtype C gp120 Env protein at two dose levels in healthy HIV-uninfected adults. Trial registration URL https://clinicaltrials.gov/ct2/show/NCT03122223 and registration number NCT03122223. METHODS: Participants received ALVAC-HIV (vCP2438) alone or placebo at months 0 and 1. At months 3 and 6, participants received either placebo, ALVAC-HIV (vCP2438) with 200µg of bivalent subtype C gp120 adjuvanted with MF59 or AS01B, or ALVAC-HIV (vCP2438) with 40µg of bivalent subtype C gp120 adjuvanted with AS01B. Primary outcomes were safety and immune responses. RESULTS: We enrolled 160 participants, 55% females, 18-40 years old (median age 24 years) of whom 150 received vaccine and 10 placebo. Vaccines were generally safe and well tolerated. At months 6.5 and 12, CD4+ T-cell response rates and magnitudes were higher in the AS01B-adjuvanted groups than in the MF59-adjuvanted group. At month 12, HIV-specific Env-gp120 binding antibody response magnitudes in the 40µg gp120/AS01B group were higher than in either of the 200µg gp120 groups. CONCLUSIONS: The 40µg dose gp120/AS01B regimen elicited the highest CD4+ T-cell and binding antibody responses.

10.
BMC Immunol ; 24(1): 25, 2023 08 29.
Article in English | MEDLINE | ID: mdl-37644394

ABSTRACT

BACKGROUND: Fishing communities surrounding Lake Victoria in Uganda have HIV prevalence of 28% and incidence rates of 5 per 100 person years. More than 50% of the local fishermen are infected with Schistosoma mansoni (S. mansoni). We investigated the role of S. mansoni coinfection as a possible modifier of immune responses against HIV. Using polychromatic flow cytometry and Gran-ToxiLux assays, HIV specific responses, T cell phenotypes, antibody-dependent cell-mediated cytotoxic (ADCC) potency and titres were compared between participants with HIV-S. mansoni coinfection and participants with HIV infection alone. RESULTS: S. mansoni coinfection was associated with a modified pattern of anti-HIV responses, including lower frequency of bifunctional (IFNγ + IL-2 - TNF-α+) CD4 T cells, higher overall CD4 T cell activation and lower HIV ADCC antibody titres, compared to participants with HIV alone. CONCLUSIONS: These results support the hypothesis that S. mansoni infection affects T cell and antibody responses to HIV in coinfected individuals.


Subject(s)
Coinfection , HIV Infections , Schistosomiasis , Animals , Antibodies , HIV Infections/complications , HIV Infections/epidemiology , Schistosoma mansoni , Schistosomiasis/complications , Schistosomiasis/epidemiology
11.
Immunogenetics ; 75(1): 1-16, 2023 02.
Article in English | MEDLINE | ID: mdl-35904629

ABSTRACT

Heritable polymorphisms within the human IgG locus, collectively termed allotypes, have often been linked by statistical associations, but rarely mechanistically, to a wide range of disease states. One potential explanation for these associations is that IgG allotype alters host cell receptors' affinity for IgG, dampening or enhancing an immune response depending on the nature of the change and the receptors. In this work, a panel of allotypic antibody variants were evaluated using multiplexed, label-free biophysical methods and cell-based functional assays to determine what effect, if any, human IgG polymorphisms have on antibody function. While we observed several differences in FcγR affinity among allotypes, there was little evidence of dramatically altered FcγR-based effector function or antigen recognition activity associated with this aspect of genetic variability.


Subject(s)
Immunoglobulin G , Receptors, IgG , Humans , Receptors, IgG/genetics , Immunoglobulin G/genetics , Immunity , Immunoglobulin Allotypes/genetics
12.
J Virol ; 96(2): e0164321, 2022 01 26.
Article in English | MEDLINE | ID: mdl-34730393

ABSTRACT

Antibody-dependent cellular cytotoxicity (ADCC) has been correlated with reduced risk of human immunodeficiency virus type 1 (HIV-1) infection in several preclinical vaccine trials and in the RV144 clinical trial, indicating that this is a relevant antibody function to study. Given the diversity of HIV-1, the breadth of vaccine-induced antibody responses is a critical parameter to understand if a universal vaccine is to be realized. Moreover, the breadth of ADCC responses can be influenced by different vaccine strategies and regimens, including adjuvants. Therefore, to accurately evaluate ADCC and to compare vaccine regimens, it is important to understand the range of HIV Envelope (Env) susceptibility to these responses. These evaluations have been limited because of the complexity of the assay and the lack of a comprehensive panel of viruses for the assessment of these humoral responses. Here, we used 29 HIV-1 infectious molecular clones (IMCs) representing different Envelope subtypes and circulating recombinant forms to characterize susceptibility to ADCC from antibodies in plasma from infected individuals, including 13 viremic individuals, 10 controllers, and six with broadly neutralizing antibody responses. We found in our panel that ADCC susceptibility of the IMCs in our panel did not cluster by subtype, infectivity, level of CD4 downregulation, level of shedding, or neutralization sensitivity. Using partitioning around medoids (PAM) clustering to distinguish smaller groups of IMCs with similar ADCC susceptibility, we identified nested panels of four to eight IMCs that broadly represent the ADCC susceptibility of the entire 29-IMC panel. These panels, together with reagents developed to specifically accommodate circulating viruses at the geographical sites of vaccine trials, will provide a powerful tool to harmonize ADCC data generated across different studies and to detect common themes of ADCC responses elicited by various vaccines. IMPORTANCE Antibody-dependent cellular cytotoxicity (ADCC) responses were found to correlate with reduced risk of infection in the RV144 trial of the only human HIV-1 vaccine to show any efficacy to date. However, reagents to understand the breadth and magnitude of these responses across preclinical and clinical vaccine trials remain underdeveloped. In this study, we characterize HIV-1 infectious molecular clones encoding 29 distinct Envelope strains (Env-IMCs) to understand factors that impact virus susceptibility to ADCC and use statistical methods to identify smaller nested panels of four to eight Env-IMCs that accurately represent the full set. These reagents can be used as standardized reagents across studies to fully understand how ADCC may affect efficacy of future vaccine studies and how studies differ in the breadth of responses developed.


Subject(s)
AIDS Vaccines/immunology , Antibody-Dependent Cell Cytotoxicity , HIV Antibodies/immunology , HIV-1/immunology , env Gene Products, Human Immunodeficiency Virus/immunology , AIDS Vaccines/standards , Antibodies, Neutralizing , Genetic Variation , HIV Antibodies/blood , HIV Infections/blood , HIV-1/classification , HIV-1/genetics , Humans , Neutralization Tests/standards , Phylogeny , env Gene Products, Human Immunodeficiency Virus/genetics
13.
PLoS Pathog ; 17(11): e1010046, 2021 11.
Article in English | MEDLINE | ID: mdl-34788337

ABSTRACT

Despite antibody-dependent cellular cytotoxicity (ADCC) responses being implicated in protection from HIV-1 infection, there is limited evidence that they control virus replication. The high mutability of HIV-1 enables the virus to rapidly adapt, and thus evidence of viral escape is a very sensitive approach to demonstrate the importance of this response. To enable us to deconvolute ADCC escape from neutralizing antibody (nAb) escape, we identified individuals soon after infection with detectable ADCC responses, but no nAb responses. We evaluated the kinetics of ADCC and nAb responses, and viral escape, in five recently HIV-1-infected individuals. In one individual we detected viruses that escaped from ADCC responses but were sensitive to nAbs. In the remaining four participants, we did not find evidence of viral evolution exclusively associated with ADCC-mediating non-neutralizing Abs (nnAbs). However, in all individuals escape from nAbs was rapid, occurred at very low titers, and in three of five cases we found evidence of viral escape before detectable nAb responses. These data show that ADCC-mediating nnAbs can drive immune escape in early infection, but that nAbs were far more effective. This suggests that if ADCC responses have a protective role, their impact is limited after systemic virus dissemination.


Subject(s)
Antibodies, Neutralizing/immunology , Antibody-Dependent Cell Cytotoxicity , CD4-Positive T-Lymphocytes/immunology , HIV Antibodies/immunology , HIV Infections/immunology , HIV-1/immunology , Immune Evasion , HIV Infections/virology , Humans , Prospective Studies , Virus Replication
14.
PLoS Pathog ; 17(3): e1009363, 2021 03.
Article in English | MEDLINE | ID: mdl-33720973

ABSTRACT

The pox-protein regimen tested in the RV144 trial is the only vaccine strategy demonstrated to prevent HIV-1 infection. Subsequent analyses identified antibody and cellular immune responses as correlates of risk (CoRs) for HIV infection. Early predictors of these CoRs could provide insight into vaccine-induced protection and guide efforts to enhance vaccine efficacy. Using specimens from a phase 1b trial of the RV144 regimen in HIV-1-uninfected South Africans (HVTN 097), we profiled innate responses to the first ALVAC-HIV immunization. PBMC transcriptional responses peaked 1 day post-vaccination. Type I and II interferon signaling pathways were activated, as were innate pathways critical for adaptive immune priming. We then identified two innate immune transcriptional signatures strongly associated with adaptive immune CoR after completion of the 4-dose regimen. Day 1 signatures were positively associated with antibody-dependent cellular cytotoxicity and phagocytosis activity at Month 6.5. Conversely, a signature present on Days 3 and 7 was inversely associated with Env-specific CD4+ T cell responses at Months 6.5 and 12; rapid resolution of this signature was associated with higher Env-specific CD4+ T-cell responses. These are the first-reported early immune biomarkers of vaccine-induced responses associated with HIV-1 acquisition risk in humans and suggest hypotheses to improve HIV-1 vaccine regimens.


Subject(s)
AIDS Vaccines/immunology , HIV Infections/prevention & control , HIV-1/immunology , Immunity, Innate/immunology , Antibodies, Neutralizing/immunology , Antibody-Dependent Cell Cytotoxicity/immunology , CD4-Positive T-Lymphocytes/immunology , HIV Antibodies/immunology , HIV Antigens/immunology , HIV Infections/immunology , Humans , Leukocytes, Mononuclear/immunology , Risk
15.
J Infect Dis ; 225(5): 856-861, 2022 03 02.
Article in English | MEDLINE | ID: mdl-34562096

ABSTRACT

We tested the combination of a broadly neutralizing HIV antibody with the latency reversal agent vorinostat (VOR). Eight participants received 2 month-long cycles of VRC07-523LS with VOR. Low-level viremia, resting CD4+ T-cell-associated HIV RNA (rca-RNA) was measured, and intact proviral DNA assay (IPDA) and quantitative viral outgrowth assay (QVOA) were performed at baseline and posttreatment. In 3 participants, IPDA and QVOA declines were accompanied by significant declines of rca-RNA. However, no IPDA or QVOA declines clearly exceeded assay variance or natural decay. Increased resistance to VRC07-523LS was not observed. This combination therapy did not reduce viremia or the HIV reservoir. Clinical Trials Registration. NCT03803605.


Subject(s)
HIV Infections , HIV-1 , Broadly Neutralizing Antibodies , CD4-Positive T-Lymphocytes , HIV-1/genetics , Humans , Viremia/drug therapy , Virus Latency , Vorinostat/therapeutic use
16.
BMC Immunol ; 23(1): 48, 2022 09 29.
Article in English | MEDLINE | ID: mdl-36175869

ABSTRACT

BACKGROUND: Cellular immune responses are phenotypically and functionally perturbed during HIV-1 infection, with the majority of function restored upon antiretroviral therapy (ART). Despite ART, residual inflammation remains that can lead to HIV-related co-morbidities and mortality, indicating that ART does not fully restore normal immune cell function. Thus, understanding the dynamics of the immune cell landscape during HIV-1 infection and ART is critical to defining cellular dysfunction that occurs during HIV-1 infection and imprints during therapy. RESULTS: Here, we have applied single-cell transcriptome sequencing of peripheral blood immune cells from chronic untreated HIV-1 individuals, HIV-1-infected individuals receiving ART and HIV-1 negative individuals. We also applied single-cell transcriptome sequencing to a primary cell model of early HIV-1 infection using CD4+ T cells from healthy donors. We described changes in the transcriptome at high resolution that occurred during HIV-1 infection, and perturbations that remained during ART. We also determined transcriptional differences among T cells expressing HIV-1 transcripts that identified key regulators of HIV-1 infection that may serve as targets for future therapies to block HIV-1 infection. CONCLUSIONS: This work identified key molecular pathways that are altered in immune cells during chronic HIV-1 infection that could remain despite therapy. We also identified key genes that are upregulated during early HIV-1 infection that provide insights on the mechanism of HIV-1 infection and could be targets for future therapy.


Subject(s)
Graft vs Host Disease , HIV Infections , HIV-1 , CD4-Positive T-Lymphocytes , HIV Infections/drug therapy , Humans , Single-Cell Analysis , Transcriptome
17.
PLoS Pathog ; 16(2): e1008083, 2020 02.
Article in English | MEDLINE | ID: mdl-32092122

ABSTRACT

Antibody functions such as neutralization require recognition of antigen by the Fab region, while effector functions are additionally mediated by interactions of the Fc region with soluble factors and cellular receptors. The efficacy of individual antibodies varies based on Fab domain characteristics, such as affinity for antigen and epitope-specificity, and on Fc domain characteristics that include isotype, subclass, and glycosylation profile. Here, a series of HIV-specific antibody subclass and hinge variants were constructed and tested to define those properties associated with differential effector function. In the context of the broadly neutralizing CD4 binding site-specific antibody VRC01 and the variable loop (V3) binding antibody 447-52D, hinge truncation and extension had a considerable impact on the magnitude of phagocytic activity of both IgG1 and IgG3 subclasses. The improvement in phagocytic potency of antibodies with extended hinges could not be attributed to changes in either intrinsic antigen or antibody receptor affinity. This effect was specific to phagocytosis and was generalizable to different phagocytes, at different effector cell to target ratios, for target particles of different size and composition, and occurred across a range of antibody concentrations. Antibody dependent cellular cytotoxicity and neutralization were generally independent of hinge length, and complement deposition displayed variable local optima. In vivo stability testing showed that IgG molecules with altered hinges can exhibit similar biodistribution and pharmacokinetic profiles as IgG1. Overall, these results suggest that when high phagocytic activity is desirable, therapeutic antibodies may benefit from being formatted as human IgG3 or engineered IgG1 forms with elongated hinges.


Subject(s)
Antibodies, Neutralizing , Antibody-Dependent Cell Cytotoxicity , HIV Antibodies , HIV-1/immunology , Hinge Exons , Phagocytosis/immunology , Antibodies, Neutralizing/genetics , Antibodies, Neutralizing/immunology , HEK293 Cells , HIV Antibodies/genetics , HIV Antibodies/immunology , Humans , Immunoglobulin G/genetics , Immunoglobulin G/immunology
18.
PLoS Pathog ; 16(9): e1008764, 2020 09.
Article in English | MEDLINE | ID: mdl-32881968

ABSTRACT

To augment HIV-1 pox-protein vaccine immunogenicity using a next generation adjuvant, a prime-boost strategy of recombinant modified vaccinia virus Ankara and multimeric Env gp145 was evaluated in macaques with either aluminum (alum) or a novel liposomal monophosphoryl lipid A (MPLA) formulation adsorbed to alum, ALFA. Binding antibody responses were robust and comparable between arms, while antibody-dependent neutrophil and monocyte phagocytotic responses were greatly enhanced by ALFA. Per-exposure vaccine efficacy against heterologous tier 2 SHIV mucosal challenge was 90% in ALFA-adjuvanted males (P = 0.002), while alum conferred no protection. Half of the ALFA-adjuvanted males remained uninfected after the full challenge series, which spanned seven months after the last vaccination. Antibody-dependent monocyte and neutrophil phagocytic responses both strongly correlated with protection. Significant sex differences in infection risk were observed, with much lower infection rates in females than males. In humans, MPLA-liposome-alum adjuvanted gp120 also increased HIV-1-specific phagocytic responses relative to alum. Thus, next-generation liposome-based adjuvants can drive vaccine elicited antibody effector activity towards potent phagocytic responses in both macaques and humans and these responses correlate with protection. Future protein vaccination strategies aiming to improve functional humoral responses may benefit from such adjuvants.


Subject(s)
Adjuvants, Immunologic/administration & dosage , Antibodies, Viral/immunology , Antibody Formation/immunology , HIV Antibodies/immunology , HIV Infections/prevention & control , SAIDS Vaccines/therapeutic use , Simian Acquired Immunodeficiency Syndrome/prevention & control , Adolescent , Adult , Animals , Antibodies, Neutralizing/immunology , Double-Blind Method , Female , HIV Infections/immunology , HIV Infections/virology , HIV-1/drug effects , HIV-1/immunology , Humans , Macaca mulatta , Male , Middle Aged , SAIDS Vaccines/immunology , Simian Acquired Immunodeficiency Syndrome/immunology , Simian Acquired Immunodeficiency Syndrome/virology , Simian Immunodeficiency Virus/drug effects , Simian Immunodeficiency Virus/immunology , Young Adult
19.
Cytometry A ; 101(6): 483-496, 2022 06.
Article in English | MEDLINE | ID: mdl-35301794

ABSTRACT

Since the beginning of the SARS-CoV-2 pandemic, antibody responses and antibody effector functions targeting SARS-CoV-2-infected cells have been understudied. Consequently, the role of these types of antibodies in SARS-CoV-2 disease (COVID-19) and immunity is still undetermined. To provide tools to study these responses, we used plasma from SARS-CoV-2-infected individuals (n = 50) and SARS-CoV-2 naive healthy controls (n = 20) to develop four specific and reproducible flow cytometry-based assays: (i) two assessing antibody binding to, and antibody-mediated NK cell degranulation against, SARS-CoV-2-infected cells and (ii) two assessing antibody binding to, and antibody-mediated NK cell degranulation against, SARS-CoV-2 Spike-transfected cells. All four assays demonstrated the ability to detect the presence of these functional antibody responses in a specific and reproducible manner. Interestingly, we found weak to moderate correlations between the four assays (Spearman rho ranged from 0.50 to 0.74), suggesting limited overlap in the responses captured by the individual assays. Lastly, while we initially developed each assay with multiple dilutions in an effort to capture the full relationship between antibody titers and assay outcome, we explored the relationship between fewer antibody dilutions and the full dilution series for each assay to reduce assay costs and improve assay efficiency. We found high correlations between the full dilution series and fewer or single dilutions of plasma. Use of single or fewer sample dilutions to accurately determine the response rates and magnitudes of the responses allows for high-throughput use of these assays platforms to facilitate assessment of antibody responses elicited by SARS-CoV-2 infection and vaccination in large clinical studies.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Viral , Cell Degranulation , Flow Cytometry , Humans , Spike Glycoprotein, Coronavirus
20.
Immunity ; 38(1): 176-86, 2013 Jan 24.
Article in English | MEDLINE | ID: mdl-23313589

ABSTRACT

The RV144 HIV-1 trial of the canary pox vector (ALVAC-HIV) plus the gp120 AIDSVAX B/E vaccine demonstrated an estimated efficacy of 31%, which correlated directly with antibodies to HIV-1 envelope variable regions 1 and 2 (V1-V2). Genetic analysis of trial viruses revealed increased vaccine efficacy against viruses matching the vaccine strain at V2 residue 169. Here, we isolated four V2 monoclonal antibodies from RV144 vaccinees that recognize residue 169, neutralize laboratory-adapted HIV-1, and mediate killing of field-isolate HIV-1-infected CD4(+) T cells. Crystal structures of two of the V2 antibodies demonstrated that residue 169 can exist within divergent helical and loop conformations, which contrasted dramatically with the ß strand conformation previously observed with a broadly neutralizing antibody PG9. Thus, RV144 vaccine-induced immune pressure appears to target a region that may be both sequence variable and structurally polymorphic. Variation may signal sites of HIV-1 envelope vulnerability, providing vaccine designers with new options.


Subject(s)
AIDS Vaccines/immunology , HIV Antibodies/immunology , HIV Envelope Protein gp120/immunology , Amino Acid Sequence , Amino Acid Substitution/immunology , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/metabolism , HIV Antibodies/chemistry , HIV Antibodies/metabolism , HIV Envelope Protein gp120/chemistry , HIV Envelope Protein gp120/metabolism , Humans , Molecular Docking Simulation , Molecular Sequence Data , Peptides/chemistry , Peptides/immunology , Peptides/metabolism , Protein Binding/immunology , Protein Conformation
SELECTION OF CITATIONS
SEARCH DETAIL