Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters

Database
Language
Publication year range
1.
Appl Environ Microbiol ; 86(3)2020 01 21.
Article in English | MEDLINE | ID: mdl-31757821

ABSTRACT

Lactobacillus brevis beer-spoiling strains harbor plasmids that contain genes such as horA, horC, and hitA which are known to confer hop tolerance. The L. brevis beer-spoiling strain UCCLBBS124, which possesses four plasmids, was treated with novobiocin, resulting in the isolation of UCCLBBS124 derivatives exhibiting hop sensitivity and an inability to grow in beer. One selected derivative was shown to have lost a single plasmid, here designated UCCLBBS124_D, which harbors the UCCLBBS124_pD0015 gene, predicted to encode a glycosyltransferase. Hop tolerance and growth in beer were restored when UCCLBBS124_pD0015 was introduced in one of these hop-sensitive derivatives on a plasmid. We hypothesize that this gene modifies the surface composition of the polysaccharide cell wall, conferring protection against hop compounds. Furthermore, the introduction of this gene in trans in L. brevis UCCLB521, a strain that cannot grow in and spoil beer, was shown to furnish the resulting strain with the ability to grow in beer, while its expression also conferred phage resistance. This study underscores how the acquisition of certain mobile genetic elements plays a role in hop tolerance and beer spoilage for strains of this bacterial species.IMPORTANCELactobacillus brevis is a member of the lactic acid bacteria and is often reported as the causative agent of food or beverage spoilage, in particular, that of beer. Bacterial spoilage of beer may result in product withdrawal or recall, with concomitant economic losses for the brewing industry. A very limited number of genes involved in beer spoilage have been identified and primarily include those involved in hop resistance, such as horA, hitA, and horC However, since none of these genes are universal, it is clear that there are likely (many) other molecular players involved in beer spoilage. Here, we report on the importance of a plasmid-encoded glycosyltransferase associated with beer spoilage by L. brevis that is involved in hop tolerance. The study highlights the complexity of the genetic requirements to facilitate beer spoilage and the role of multiple key players in this process.


Subject(s)
Bacterial Proteins/genetics , Beer/microbiology , Glycosyltransferases/genetics , Lactobacillales/genetics , Levilactobacillus brevis/genetics , Plasmids/genetics , Bacterial Proteins/metabolism , Food Microbiology , Glycosyltransferases/metabolism , Humulus/chemistry , Lactobacillales/enzymology , Levilactobacillus brevis/enzymology , Plasmids/metabolism
2.
BMC Genomics ; 20(1): 416, 2019 May 23.
Article in English | MEDLINE | ID: mdl-31122208

ABSTRACT

BACKGROUND: Lactobacillus brevis is a member of the lactic acid bacteria (LAB), and strains of L. brevis have been isolated from silage, as well as from fermented cabbage and other fermented foods. However, this bacterium is also commonly associated with bacterial spoilage of beer. RESULTS: In the current study, complete genome sequences of six isolated L. brevis strains were determined. Five of these L. brevis strains were isolated from beer (three isolates) or the brewing environment (two isolates), and were characterized as beer-spoilers or non-beer spoilers, respectively, while the sixth isolate had previously been isolated from silage. The genomic features of 19 L. brevis strains, encompassing the six L. brevis strains described in this study and thirteen L. brevis strains for which complete genome sequences were available in public databases, were analyzed with particular attention to evolutionary aspects and adaptation to beer. CONCLUSIONS: Comparative genomic analysis highlighted evolution of the taxon allowing niche colonization, notably adaptation to the beer environment, with approximately 50 chromosomal genes acquired by L. brevis beer-spoiler strains representing approximately 2% of their total chromosomal genetic content. These genes primarily encode proteins that are putatively involved in oxidation-reduction reactions, transcription regulation or membrane transport, functions that may be crucial to survive the harsh conditions associated with beer. The study emphasized the role of plasmids in beer spoilage with a number of unique genes identified among L. brevis beer-spoiler strains.


Subject(s)
Genome, Bacterial , Levilactobacillus brevis/genetics , Beer/microbiology , Evolution, Molecular , Genes, Bacterial , Levilactobacillus brevis/classification , Levilactobacillus brevis/isolation & purification , Phylogeny , Plasmids
3.
Front Microbiol ; 10: 2396, 2019.
Article in English | MEDLINE | ID: mdl-31681247

ABSTRACT

Lactobacillus brevis is a lactic acid bacterium that is known as a food and beverage spoilage organism, and more specifically as a beer-spoiler. Phages of L. brevis have been described, but very limited data is available regarding temperate phages of L. brevis. Temperate phages may exert benefits to the host, while they may also be employed to combat beer spoilage. The current study reports on the incidence of prophage sequences present in nineteen distinct L. brevis genomes. Prophage induction was evaluated using mitomycin C exposure followed by genome targeted-PCR, electron microscopy and structural proteome analysis. The morphological and genome sequence analyses revealed significant diversity among L. brevis prophages, which appear to be dominated by members of the Myoviridae phage family. Based on this analysis, we propose a classification of L. brevis phages into five groups.

4.
Viruses ; 11(5)2019 04 26.
Article in English | MEDLINE | ID: mdl-31035495

ABSTRACT

Lactobacillus brevis has been widely used in industry for fermentation purposes. However, it is also associated with the spoilage of foods and beverages, in particular, beer. There is an increasing demand for natural food preservation methods, and in this context, bacteriophages possess the potential to control such spoilage bacteria. Just a few studies on phages infecting Lactobacillus brevis have been performed to date and in the present study, we report the isolation and characterization of five virulent phages capable of infecting Lb. brevis strains. The analysis reveals a high diversity among the isolates, with members belonging to both, the Myoviridae and Siphoviridae families. One isolate, designated phage 3-521, possesses a genome of 140.8 kb, thus representing the largest Lb. brevis phage genome sequenced to date. While the isolated phages do not propagate on Lb. brevis beer-spoiling strains, phages showed activity against these strains, impairing the growth of some Lb. brevis strains. The results highlight the potential of bacteriophage-based treatments as an effective approach to prevent bacterial spoilage of beer.


Subject(s)
Bacteriophages/isolation & purification , Bacteriophages/physiology , Levilactobacillus brevis/virology , Bacteriophages/genetics , Bacteriophages/ultrastructure , Beer , Fermentation , Food Microbiology , Genome, Viral , Genomics/methods , Host Specificity , Phylogeny , Proteomics/methods
5.
Sci Rep ; 6: 36667, 2016 11 08.
Article in English | MEDLINE | ID: mdl-27824135

ABSTRACT

The tail tape measure protein (TMP) of tailed bacteriophages (also called phages) dictates the tail length and facilitates DNA transit to the cell cytoplasm during infection. Here, a thorough mutational analysis of the TMP from lactococcal phage TP901-1 (TMPTP901-1) was undertaken. We generated 56 mutants aimed at defining TMPTP901-1 domains that are essential for tail assembly and successful infection. Through analysis of the derived mutants, we determined that TP901-1 infectivity requires the N-terminal 154 aa residues, the C-terminal 60 residues and the first predicted hydrophobic region of TMPTP901-1 as a minimum. Furthermore, the role of TMPTP901-1 in tail length determination was visualized by electron microscopic imaging of TMP-deletion mutants. The inverse linear correlation between the extent of TMPTP901-1-encoding gene deletions and tail length of the corresponding virion provides an estimate of TMPTP901-1 regions interacting with the connector or involved in initiator complex formation. This study represents the most thorough characterisation of a TMP from a Gram-positive host-infecting phage and provides essential advances to understanding its role in virion assembly, morphology and infection.


Subject(s)
Lactococcus/virology , Siphoviridae/chemistry , Viral Proteins/chemistry , Siphoviridae/metabolism , Structure-Activity Relationship , Viral Proteins/metabolism , Viral Proteins/ultrastructure
SELECTION OF CITATIONS
SEARCH DETAIL