Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters

Database
Language
Publication year range
1.
J Am Chem Soc ; 146(21): 14453-14467, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38747845

ABSTRACT

We demonstrate a family of molecular precursors based on 7,10-dibromo-triphenylenes that can selectively produce different varieties of atomically precise porous graphene nanomaterials through the use of different synthetic environments. Upon Yamamoto polymerization of these molecules in solution, the free rotations of the triphenylene units around the C-C bonds result in the formation of cyclotrimers in high yields. In contrast, in on-surface polymerization of the same molecules on Au(111) these rotations are impeded, and the coupling proceeds toward the formation of long polymer chains. These chains can then be converted to porous graphene nanoribbons (pGNRs) by annealing. Correspondingly, the solution-synthesized cyclotrimers can also be deposited onto Au(111) and converted into porous nanographenes (pNGs) via thermal treatment. Thus, both processes start with the same molecular precursor and end with a porous graphene nanomaterial on Au(111), but the type of product, pNG or pGNR, depends on the specific coupling approach. We also produced extended nanoporous graphenes (NPGs) through the lateral fusion of highly aligned pGNRs on Au(111) that were grown at high coverage. The pNGs can also be synthesized directly in solution by Scholl oxidative cyclodehydrogenation of cyclotrimers. We demonstrate the generality of this approach by synthesizing two varieties of 7,10-dibromo-triphenylenes that selectively produced six nanoporous products with different dimensionalities. The basic 7,10-dibromo-triphenylene monomer is amenable to structural modifications, potentially providing access to many new porous graphene nanomaterials. We show that by constructing different porous structures from the same building blocks, it is possible to tune the energy band gap in a wide range.

2.
J Am Chem Soc ; 146(7): 4489-4499, 2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38327095

ABSTRACT

Two-dimensional covalent organic frameworks (COFs) are an emerging class of photocatalytic materials for solar energy conversion. In this work, we report a pair of structurally isomeric COFs with reversed imine bond directions, which leads to drastic differences in their physical properties, photophysical behaviors, and photocatalytic CO2 reduction performance after incorporating a Re(bpy)(CO)3Cl molecular catalyst through bipyridyl units on the COF backbone (Re-COF). Using the combination of ultrafast spectroscopy and theory, we attributed these differences to the polarized nature of the imine bond that imparts a preferential direction to intramolecular charge transfer (ICT) upon photoexcitation, where the bipyridyl unit acts as an electron acceptor in the forward imine case (f-COF) and as an electron donor in the reverse imine case (r-COF). These interactions ultimately lead the Re-f-COF isomer to function as an efficient CO2 reduction photocatalyst, while the Re-r-COF isomer shows minimal photocatalytic activity. These findings not only reveal the essential role linker chemistry plays in COF photophysical and photocatalytic properties but also offer a unique opportunity to design photosensitizers that can selectively direct charges.

3.
J Am Chem Soc ; 145(25): 13929-13937, 2023 Jun 28.
Article in English | MEDLINE | ID: mdl-37318755

ABSTRACT

Multivariate MOFs (MTV-MOFs) constructed from multiple components with atomistic precision hold the promise for many fascinating developments in both fundamental sciences and applications. Sequential linker installation can be an effective method to introduce different functional linkers into an MOF that contains coordinatively unsaturated metal sites. However, in many cases, these linkers must be installed according to a specific sequence and the complete synthetic flexibility and freedom is yet to be realized. Here, we rationally decreased the size of the primary ligand used in NPF-300, a Zr-MOF with scu topology (NPF = Nebraska Porous Framework), and synthesized its isostructure, NPF-320. NPF-320 exhibits optimized pocket sizes which allow for the post-synthetic installation of three secondary linkers in all six permuted sequences via both linker exchange and installation, forming a final quinary MTV-MOF via single-crystal-to-single-crystal transformation. With the functionalization of the linkers from the quinary MOF system, one will be able to construct MTV-MOFs not only with variable porosity but also with unprecedented complexity and encoded synthetic sequence information. The utility of sequential linker installation was further demonstrated by the construction of a donor-acceptor pair-based energy transfer system.

4.
J Am Chem Soc ; 145(44): 24052-24060, 2023 Nov 08.
Article in English | MEDLINE | ID: mdl-37880201

ABSTRACT

Heterogeneous catalysis plays an indispensable role in chemical production and energy conversion. Incorporation of transition metals into metal oxides and zeolites is a common strategy to fine-tune the activity and selectivity of the resulting solid catalysts, as either the active center or promotor. Studying the underlying mechanism is however challenging. Decorating the metal-oxo clusters with transition metals in metal-organic frameworks (MOFs) via postsynthetic modification offers a rational approach to construct well-defined structural models for better understanding of the reaction mechanism. Therefore, it is important to expand the materials scope beyond the currently widely studied zirconium MOFs consisting of Zr6 nodes. In this work, we report the design and synthesis of a new (4,12)-connected Zr-MOF with ith topology that consists of rare Zr9 nodes. FeIII was further incorporated onto the Zr9 nodes of the framework, and the resulting MOF material exhibits significantly enhanced activity and selectivity toward the photocatalytic oxidation of toluene. This work demonstrates a delicate ligand design strategy to control the nuclearity of Zr-oxo clusters, which further dictates the number and binding sites of transition metals and the overall photocatalytic activity toward C-H activation. Our work paves the way for future exploration of the structure-activity study of catalysts using MOFs as the model system.

5.
J Am Chem Soc ; 143(2): 1061-1068, 2021 Jan 20.
Article in English | MEDLINE | ID: mdl-33393281

ABSTRACT

2D covalent organic frameworks (COFs) have emerged as a promising class of organic luminescent materials due to their structural diversity, which allows the systematic tuning of organic building blocks to optimize emitting properties. However, a significant knowledge gap exists between the design strategy and the fundamental understanding of the key structural parameters that determine their photophysical properties. In this work, we report two highly emissive sp2-C-COFs and the direct correlation of the structure (conjugation and aggregation) with their light absorption/emission, charge transfer (CT), and exciton dynamics, the key properties that determine their function as luminescent materials. We show that white light can be obtained by simply coating COFs on an LED strip or mixing the two COFs. Using the combination of time-resolved absorption and emission spectroscopy as well as computational prediction, we show that the planarity, conjugation, orientation of the dipole moment, and interlayer aggregation not only determine the light-harvesting ability of COFs but also control the exciton relaxation pathway and photoluminescent quantum yield.

6.
J Am Chem Soc ; 143(48): 20411-20418, 2021 12 08.
Article in English | MEDLINE | ID: mdl-34797665

ABSTRACT

In the past decades, many attempts have been made to mimic the energy transfer (EnT) in photosynthesis, a key process occurring in nature that is of fundamental significance in solar fuels and sustainable energy. Metal-organic frameworks (MOFs), an emerging class of porous crystalline materials self-assembled from organic linkers and metal or metal cluster nodes, offer an ideal platform for the exploration of directional EnT phenomena. However, placing energy donor and acceptor moieties within the same framework with an atomistic precision appears to be a major synthesis challenge. In this work, we report the design and synthesis of a highly porous and photoactive N,N'-bicarbazole- and porphyrin-based mixed-ligand MOF, namely, NPF-500-H2TCPP (NPF = Nebraska porous framework; H2TCPP = meso-tetrakis(4-carboxyphenyl)porphyrin), where the secondary ligand H2TCPP is incorporated precisely through the open metal sites of the equatorial plane of the octahedron cage resulting from the underlying (4,8) connected network of NPF-500. The efficient EnT process from N,N'-bicarbazole to porphyrin in NPF-500-H2TCPP was captured by time-resolved spectroscopy and exemplified by photocatalytic oxidation of thioanisole. These results demonstrate not only the capability of NPF-500 as the scaffold to precisely arrange the donor-acceptor assembly for the EnT process but also the potential to directly utilize the EnT process for photocatalytic applications.

7.
J Am Chem Soc ; 142(50): 21050-21058, 2020 12 16.
Article in English | MEDLINE | ID: mdl-33226217

ABSTRACT

Conductive metal organic frameworks (MOFs) represent a promising class of porous crystalline materials that have demonstrated potential in photo-electronics and photocatalytic applications. However, the lack of fundamental understanding on charge transport (CT) mechanism as well as the correlation of CT mechanism with their structure hampered their further development. Herein, we report the direct evidence of CT mechanism in 2D Cu-THQ MOFs and the correlation of temporal and spatial behaviors of charge carriers with their photoconductivity by combining three advanced spectroscopic methods, including time resolved optical and X-ray absorption spectroscopy and terahertz spectroscopy. In addition to Cu-THQ, the CT in Cu/Zn-THQ after incorporating Zn2+ guest metal was also examined to uncover the contribution of through space pathway, as the presence of the redox inactive 3d10 Zn2+ is expected to perturb the long range in-plane CT. We show that the hot carriers in Cu-THQ generated after photoexcitation are highly mobile and undergo fast localization to a lower energy state (cool carriers) with electrons occupying Cu center and holes in ligands. The cool carriers, which have super long lifetime (>17 ns), are responsible for the long-term photoconductivity in Cu-THQ and transport through the O-Cu-O motif with negligible contribution from interlayer ligand π-π stacking, as incorporation of Zn2+ in Cu-THQ significantly reduced photoconductivity. These unprecedented results not only demonstrate the capability to experimentally probe CT mechanism but also provide important insight in the rational design of 2D MOFs for photoelectronic and photocatalytic applications.

9.
Chem Commun (Camb) ; 56(90): 13971-13974, 2020 Nov 21.
Article in English | MEDLINE | ID: mdl-33084633

ABSTRACT

Metal organic frameworks (MOFs) have emerged as promising photocatalytic materials for solar energy conversion. However, a fundamental understanding of light harvesting and charge separation (CS) dynamics in MOFs remains underexplored, yet they are key factors that determine the efficiency of photocatalysis. Herein, we report the design and CS dynamics of the Ce-TCPP MOF using ultrafast spectroscopic methods.

SELECTION OF CITATIONS
SEARCH DETAIL