Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Publication year range
1.
Immunology ; 170(4): 540-552, 2023 12.
Article in English | MEDLINE | ID: mdl-37671510

ABSTRACT

Adoptive regulatory T-cell (Treg) transfer has emerged as a promising therapeutic strategy for regulating immune responses in organ transplantation, graft versus host disease, and autoimmunity, including Type 1 diabetes. Traditionally, Treg for adoptive therapy have been sorted and expanded in vitro using high doses of IL-2, demonstrating stability and suppressive capabilities. However, limitations in their long-term survival post-infusion into patients have been observed. To address this challenge, we investigated a novel expansion protocol incorporating interleukin-7 (IL-7) alongside the traditional method utilizing IL-2 (referred to as IL-7 method, IL-7M). Our study revealed that naïve Treg express significant levels of CD127 and display robust responsiveness to IL-7, characterized by STAT-5 phosphorylation. Expanding naïve Treg with the IL-7M protocol led to a substantial enrichment of CD45RA+ CD62L+ CD95+ Treg but showing a reduction in the final cell yield and suppressive function. Moreover, Treg expanded with the IL-7M exhibited preserved telomere length and demonstrated enhanced resistance to cytokine withdrawal and fas-mediated apoptosis. When transferred into NSG mice IL-7M-Treg persisted longer and reduced the expansion of T cells, but did not significantly reduce the severity of xenoGvHD. In conclusion, our data demonstrate the feasibility of expanding naïve Treg in the presence of IL-7 to generate a Treg product enriched in poorly differentiated CD45RA+ cells with enhanced survival capabilities.


Subject(s)
Interleukin-7 , T-Lymphocytes, Regulatory , Humans , Mice , Animals , Interleukin-2 , Cytokines , Adoptive Transfer/methods , Leukocyte Common Antigens , Forkhead Transcription Factors
2.
Immunology ; 167(3): 303-313, 2022 11.
Article in English | MEDLINE | ID: mdl-35752961

ABSTRACT

Autoreactive T cells with the phenotype and function of different memory subsets are present in patients who developed type 1 diabetes (TID). According to the progressive differentiation model, memory subsets generate from naïve precursors in a linear and unidirectional path depending on the strength and quality of stimulatory signals. By observing human naïve T cells in contact with GAD65 loaded autologous dendritic cells, we observed that approximately 10% of cells divided with the plane of cell division parallel to the one of the immune synapse, causing phenotypic asymmetries in the proximal and distal daughter T cells. After the first T cell division, proximal and distal daughter T cells showed different phenotype, metabolic signature and commitment to differentiate towards long-lived memory T cells or T cells with effector function. Subjects with or without T1D showed a similar frequency of asymmetric T cell division (ATCD) for autoantigens and recall antigens specific T cells, however the frequency of ATCD is significantly increased in autoreactive T cells in patients with T1D when IL-7 was added to the culture. An increased upregulation of GLUT1 in response to IL-7 in patients with T1D was related to the rate of ATCD. Our results showed that ATCD is associated with an early divergence in the differentiation fate of naïve T cells specific for GAD65 during first antigen encounter.


Subject(s)
Diabetes Mellitus, Type 1 , Autoantigens , Cell Differentiation , Cell Division , Glucose Transporter Type 1/metabolism , Humans , Immunologic Memory , Interleukin-7/metabolism , Memory T Cells , T-Lymphocyte Subsets
SELECTION OF CITATIONS
SEARCH DETAIL