Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 39
Filter
1.
Proc Natl Acad Sci U S A ; 117(45): 28287-28296, 2020 11 10.
Article in English | MEDLINE | ID: mdl-33093209

ABSTRACT

Head and neck squamous cell carcinoma (HNSCC) associated with high-risk human papilloma virus (HPV) infection is a growing clinical problem. The WEE1 kinase inhibitor AZD1775 (WEE1i) overrides cell cycle checkpoints and is being studied in HNSCC regimens. We show that the HPV16 E6/E7 oncoproteins sensitize HNSCC cells to single-agent WEE1i treatment through activation of a FOXM1-CDK1 circuit that drives mitotic gene expression and DNA damage. An isogenic cell system indicated that E6 largely accounts for these phenotypes in ways that extend beyond p53 inactivation. A targeted genomic analysis implicated FOXM1 signaling downstream of E6/E7 expression and analyses of primary tumors and The Cancer Genome Atlas (TCGA) data revealed an activated FOXM1-directed promitotic transcriptional signature in HPV+ versus HPV- HNSCCs. Finally, we demonstrate the causality of FOXM1 in driving WEE1i sensitivity. These data suggest that elevated basal FOXM1 activity predisposes HPV+ HNSCC to WEE1i-induced toxicity and provide mechanistic insights into WEE1i and HPV+ HNSCC therapies.


Subject(s)
Cell Cycle Proteins/drug effects , Forkhead Box Protein M1/metabolism , Papillomavirus Infections/drug therapy , Protein-Tyrosine Kinases/drug effects , Pyrazoles/antagonists & inhibitors , Pyrimidinones/antagonists & inhibitors , Squamous Cell Carcinoma of Head and Neck/drug therapy , CDC2 Protein Kinase/metabolism , Cell Cycle Checkpoints , Cell Cycle Proteins/metabolism , Cell Line, Tumor , DNA Damage/drug effects , Head and Neck Neoplasms , Humans , Oncogene Proteins, Viral/metabolism , Papillomavirus E7 Proteins/metabolism , Protein-Tyrosine Kinases/metabolism , Repressor Proteins/metabolism , Up-Regulation
2.
PLoS Pathog ; 16(12): e1008686, 2020 12.
Article in English | MEDLINE | ID: mdl-33370399

ABSTRACT

Helicobacter pylori chronically infects the stomach of approximately half of the world's population. Manifestation of clinical diseases associated with H. pylori infection, including cancer, is driven by strain properties and host responses; and as chronic infection persists, both are subject to change. Previous studies have documented frequent and extensive within-host bacterial genetic variation. To define how within-host diversity contributes to phenotypes related to H. pylori pathogenesis, this project leverages a collection of 39 clinical isolates acquired prospectively from a single subject at two time points and from multiple gastric sites. During the six years separating collection of these isolates, this individual, initially harboring a duodenal ulcer, progressed to gastric atrophy and concomitant loss of acid secretion. Whole genome sequence analysis identified 1,767 unique single nucleotide polymorphisms (SNPs) across isolates and a nucleotide substitution rate of 1.3x10-4 substitutions/site/year. Gene ontology analysis identified cell envelope genes among the genes with excess accumulation of nonsynonymous SNPs (nSNPs). A maximum likelihood tree based on genetic similarity clusters isolates from each time point separately. Within time points, there is segregation of subgroups with phenotypic differences in bacterial morphology, ability to induce inflammatory cytokines, and mouse colonization. Higher inflammatory cytokine induction in recent isolates maps to shared polymorphisms in the Cag PAI protein, CagY, while rod morphology in a subgroup of recent isolates mapped to eight mutations in three distinct helical cell shape determining (csd) genes. The presence of subgroups with unique genetic and phenotypic properties suggest complex selective forces and multiple niches within the stomach during chronic infection.


Subject(s)
Duodenal Ulcer/microbiology , Helicobacter Infections/complications , Helicobacter Infections/genetics , Helicobacter pylori/genetics , Stomach Diseases/microbiology , Animals , Atrophy/microbiology , Chronic Disease , Gastric Acid , Humans , Male , Mice , Mice, Inbred C57BL , Middle Aged , Phenotype , Polymorphism, Single Nucleotide , Stomach Diseases/pathology
3.
J Virol ; 90(15): 6657-6674, 2016 08 01.
Article in English | MEDLINE | ID: mdl-27170755

ABSTRACT

UNLABELLED: Human herpesvirus 6A (HHV-6A), HHV-6B, and HHV-7 are classified as roseoloviruses and are highly prevalent in the human population. Roseolovirus reactivation in an immunocompromised host can cause severe pathologies. While the pathogenic potential of HHV-7 is unclear, it can reactivate HHV-6 from latency and thus contributes to severe pathological conditions associated with HHV-6. Because of the ubiquitous nature of roseoloviruses, their roles in such interactions and the resulting pathological consequences have been difficult to study. Furthermore, the lack of a relevant animal model for HHV-7 infection has hindered a better understanding of its contribution to roseolovirus-associated diseases. Using next-generation sequencing analysis, we characterized the unique genome of an uncultured novel pigtailed macaque roseolovirus. Detailed genomic analysis revealed the presence of gene homologs to all 84 known HHV-7 open reading frames. Phylogenetic analysis confirmed that the virus is a macaque homolog of HHV-7, which we have provisionally named Macaca nemestrina herpesvirus 7 (MneHV7). Using high-throughput RNA sequencing, we observed that the salivary gland tissue samples from nine different macaques had distinct MneHV7 gene expression patterns and that the overall number of viral transcripts correlated with viral loads in parotid gland tissue and saliva. Immunohistochemistry staining confirmed that, like HHV-7, MneHV7 exhibits a natural tropism for salivary gland ductal cells. We also observed staining for MneHV7 in peripheral nerve ganglia present in salivary gland tissues, suggesting that HHV-7 may also have a tropism for the peripheral nervous system. Our data demonstrate that MneHV7-infected macaques represent a relevant animal model that may help clarify the causality between roseolovirus reactivation and diseases. IMPORTANCE: Human herpesvirus 6A (HHV-6A), HHV-6B, and HHV-7 are classified as roseoloviruses. We have recently discovered that pigtailed macaques are naturally infected with viral homologs of HHV-6 and HHV-7, which we provisionally named MneHV6 and MneHV7, respectively. In this study, we confirm that MneHV7 is genetically and biologically similar to its human counterpart, HHV-7. We determined the complete unique MneHV7 genome sequence and provide a comprehensive annotation of all genes. We also characterized viral transcription profiles in salivary glands from naturally infected macaques. We show that broad transcriptional activity across most of the viral genome is associated with high viral loads in infected parotid glands and that late viral protein expression is detected in salivary duct cells and peripheral nerve ganglia. Our study provides new insights into the natural behavior of an extremely prevalent virus and establishes a basis for subsequent investigations of the mechanisms that cause HHV-7 reactivation and associated disease.


Subject(s)
Genome, Viral , Herpesviridae Infections/genetics , Herpesviridae/genetics , Herpesvirus 7, Human/genetics , High-Throughput Nucleotide Sequencing/methods , Salivary Glands/metabolism , Viral Proteins/genetics , Amino Acid Sequence , Animals , Base Sequence , DNA, Viral/genetics , Herpesviridae Infections/metabolism , Herpesviridae Infections/virology , Humans , Macaca nemestrina , Phylogeny , Sequence Homology, Amino Acid , Sequence Homology, Nucleic Acid , Tropism
4.
Proc Natl Acad Sci U S A ; 111(39): 14019-26, 2014 Sep 30.
Article in English | MEDLINE | ID: mdl-25228775

ABSTRACT

Long-lived proteins have been implicated in age-associated decline in metazoa, but they have only been identified in extracellular matrices or postmitotic cells. However, the aging process also occurs in dividing cells undergoing repeated asymmetric divisions. It was not clear whether long-lived proteins exist in asymmetrically dividing cells or whether they are involved in aging. Here we identify long-lived proteins in dividing cells during aging using the budding yeast, Saccharomyces cerevisiae. Yeast mother cells undergo a limited number of asymmetric divisions that define replicative lifespan. We used stable-isotope pulse-chase and total proteome mass-spectrometry to identify proteins that were both long-lived and retained in aging mother cells after ∼ 18 cells divisions. We identified ∼ 135 proteins that we designate as long-lived asymmetrically retained proteins (LARPS). Surprisingly, the majority of LARPs appeared to be stable fragments of their original full-length protein. However, 15% of LARPs were full-length proteins and we confirmed several candidates to be long-lived and retained in mother cells by time-lapse microscopy. Some LARPs localized to the plasma membrane and remained robustly in the mother cell upon cell division. Other full-length LARPs were assembled into large cytoplasmic structures that had a strong bias to remain in mother cells. We identified age-associated changes to LARPs that include an increase in their levels during aging because of their continued synthesis, which is not balanced by turnover. Additionally, several LARPs were posttranslationally modified during aging. We suggest that LARPs contribute to age-associated phenotypes and likely exist in other organisms.


Subject(s)
Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/cytology , Saccharomyces cerevisiae/metabolism , Cell Division , Membrane Proteins/genetics , Membrane Proteins/metabolism , Peptide Fragments/genetics , Peptide Fragments/metabolism , Proteomics/methods , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/genetics
5.
JCI Insight ; 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-39052387

ABSTRACT

Over 200,000 individuals are diagnosed with lung cancer in the U.S. every year, with a growing proportion of cases, especially lung adenocarcinoma, occurring in individuals who have never smoked. Women over the age of 50 comprise the largest affected demographic. To understand the genomic drivers of lung adenocarcinoma and therapeutic response in this population, we performed whole genome and/or whole exome sequencing on 73 matched lung tumor/normal pairs from post-menopausal women who participated in the Women's Health Initiative. Somatic copy number alterations showed little variation by smoking status, suggesting that aneuploidy may be a general characteristic of lung cancer regardless of smoke exposure. Similarly, clock-like and APOBEC mutation signatures were prevalent but did not differ in tumors from smokers and never-smokers. However, mutations in both EGFR and KRAS showed unique allelic differences determined by smoking status that are known to alter tumor response to targeted therapy. Mutations in the MYC-network member MGA were more prevalent in tumors from smokers. Fusion events in ALK, RET, and ROS1 were absent, likely due to age-related differences in fusion prevalence. Our work underscores the profound impact of smoking status, age, and sex on the tumor mutational landscape and identifies areas of unmet medical need.

6.
Am J Hematol ; 88(8): 694-702, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23686445

ABSTRACT

Acute myeloid leukemia (AML) encompasses a heterogeneous group of diseases, and novel biomarkers for risk refinement and stratification are needed to optimize patient care. To identify novel risk factors, we performed transcriptome sequencing on 68 diagnostic AML samples and identified 2 transcript variants (-E2 and -E2/3) of the α-subunit (ITGA5) of the very late antigen-5 integrin. We then quantified expression of ITGA5 and these splice variants in specimens from participants of the AAML03P1 trial. We found no association between ITGA5 expression and clinical outcome. In contrast, patients with the highest relative expression (Q4) of the -E2/3 ITGA5 splice variant less likely had low-risk disease than Q1-3 patients (21% vs. 38%, P = 0.027). Q4 patients had worse response to chemotherapy with a higher proportion having persistent minimal residual disease (50% vs. 23%, P = 0.003) and inferior overall survival (at 5 years: 48% vs. 67%, P = 0.015); the latter association was limited to low-risk patients (Q4 vs. Q1-3: 56% vs. 85%, P = 0.043) and was not seen in standard-risk (51% vs. 60%, P = 0.340) or high-risk (33% vs. 38%, P = 0.952) patients. Our exploratory studies indicate that transcriptome sequencing is useful for biomarker discovery, as exemplified by the identification of ITGA5 -E2/3 splice variant as potential novel adverse prognostic marker for low-risk AML that, if confirmed, could serve to further risk-stratify this patient subset.


Subject(s)
Biomarkers, Tumor , Gene Expression Regulation, Leukemic/genetics , Integrin alpha5 , Leukemia, Myeloid, Acute , RNA Splicing/genetics , Transcriptome/genetics , Adult , Biomarkers, Tumor/biosynthesis , Biomarkers, Tumor/genetics , Child , Child, Preschool , Disease-Free Survival , Female , Humans , Infant , Infant, Newborn , Integrin alpha5/biosynthesis , Integrin alpha5/genetics , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/metabolism , Leukemia, Myeloid, Acute/mortality , Male , Risk Factors , Survival Rate
7.
bioRxiv ; 2023 Jul 03.
Article in English | MEDLINE | ID: mdl-37461590

ABSTRACT

APOBEC mutagenesis is one of the most common endogenous sources of mutations in human cancer and is a major source of genetic intratumor heterogeneity. High levels of APOBEC mutagenesis are associated with poor prognosis and aggressive disease across diverse cancers, but the mechanistic and functional impacts of APOBEC mutagenesis on tumor evolution and therapy resistance remain relatively unexplored. To address this, we investigated the contribution of APOBEC mutagenesis to acquired therapy resistance in a model of EGFR-mutant non-small cell lung cancer. We find that inhibition of EGFR in lung cancer cells leads to a rapid and pronounced induction of APOBEC3 expression and activity. Functionally, APOBEC expression promotes the survival of drug-tolerant persister cells (DTPs) following EGFR inhibition. Constitutive expression of APOBEC3B alters the evolutionary trajectory of acquired resistance to the EGFR inhibitor gefitinib, making it more likely that resistance arises through de novo acquisition of the T790M gatekeeper mutation and squamous transdifferentiation during the DTP state. APOBEC3B expression is associated with increased expression of the squamous cell transcription factor ΔNp63 and squamous cell transdifferentiation in gefitinib-resistant cells. Knockout of ΔNp63 in gefitinibresistant cells reduces the expression of the p63 target genes IL1a/b and sensitizes these cells to the thirdgeneration EGFR inhibitor osimertinib. These results suggest that APOBEC activity promotes acquired resistance by facilitating evolution and transdifferentiation in DTPs, and suggest that approaches to target ΔNp63 in gefitinib-resistant lung cancers may have therapeutic benefit.

8.
Nat Protoc ; 18(11): 3355-3389, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37789194

ABSTRACT

Single-cell RNA sequencing (scRNAseq) technologies have been beneficial in revealing and describing cellular heterogeneity within mammalian tissues, including solid tumors. However, many of these techniques apply poly(A) selection of RNA, and thus have primarily focused on determining the gene signatures of eukaryotic cellular components of the tumor microenvironment. Microbiome analysis has revealed the presence of microbial ecosystems, including bacteria and fungi, within human tumor tissues from major cancer types. Imaging data have revealed that intratumoral bacteria may be located within epithelial and immune cell types. However, as bacterial RNA typically lacks a poly(A) tail, standard scRNAseq approaches have limited ability to capture this microbial component of the tumor microenvironment. To overcome this, we describe the invasion-adhesion-directed expression sequencing (INVADEseq) approach, whereby we adapt 10x Genomics 5' scRNAseq protocol by introducing a primer that targets a conserved region of the bacterial 16S ribosomal RNA gene in addition to the standard primer for eukaryotic poly(A) RNA selection. This 'add-on' approach enables the generation of eukaryotic and bacterial DNA libraries at eukaryotic single-cell level resolution, utilizing the 10x barcode to identify single cells with intracellular bacteria. The INVADEseq method takes 30 h to complete, including tissue processing, sequencing and computational analysis. As an output, INVADEseq has shown to be a reliable tool in human cancer cell lines and patient tumor specimens by detecting the proportion of human cells that harbor bacteria and the identities of human cells and intracellular bacteria, along with identifying host transcriptional programs that are modulated on the basis of associated bacteria.


Subject(s)
Microbiota , Neoplasms , Animals , Humans , Transcriptome , Bacteria/genetics , Genomics/methods , Neoplasms/pathology , Microbiota/genetics , Mammals/genetics , Tumor Microenvironment
9.
Cancer Med ; 12(17): 17632-17637, 2023 09.
Article in English | MEDLINE | ID: mdl-37587851

ABSTRACT

INTRODUCTION: We investigated a commercially available sequencing panel to study the effect of sequencing depth, variant calling strategy, and targeted sequencing region on identifying tumor-derived variants in cell-free bronchoalveolar lavage (cfBAL) DNA compared with plasma cfDNA. METHODS: Sequencing was performed at low or high coverage using two filtering algorithms to identify tumor variants on two panels targeting 77 and 197 genes respectively. RESULTS: One hundred and four sequencing files from 40 matched DNA samples of cfBAL, plasma, germline leukocytes, and archival tumor specimens in 10 patients with early-stage lung cancer were analyzed. By low-coverage sequencing, tumor-derived cfBAL variants were detected in 5/10 patients (50%) compared with 2/10 (20%) for plasma. High-coverage sequencing did not affect the number of tumor-derived variants detected in either biospecimen type. Accounting for germline mutations eliminated false-positive plasma calls regardless of coverage (0/10 patients with tumor-derived variants identified) and increased the number of cfBAL calls (5/10 patients with tumor-derived variants identified). These results were not affected by the number of targeted genes.


Subject(s)
Cell-Free Nucleic Acids , Lung Neoplasms , Humans , Bronchoalveolar Lavage Fluid , Lung Neoplasms/pathology , Lung/pathology , DNA , High-Throughput Nucleotide Sequencing/methods , Genomics/methods , Mutation
10.
bioRxiv ; 2023 Jan 06.
Article in English | MEDLINE | ID: mdl-36712079

ABSTRACT

Lung cancer in never-smokers disproportionately affects older women. To understand the mutational landscape of this cohort, we performed detailed genome characterization of 73 lung adenocarcinomas from participants of the Women’s Health Initiative (WHI). We find enrichment of EGFR mutations in never-/light-smokers and KRAS mutations in heavy smokers as expected, but we also show that the specific variants of these genes differ by smoking status, with important therapeutic implications. Mutational signature analysis revealed signatures of clock, APOBEC, and DNA repair deficiency in never-/light-smokers; however, the mutational load of these signatures did not differ significantly from those found in smokers. Last, tumors from both smokers and never-/light-smokers shared copy number subtypes, with no significant differences in aneuploidy. Thus, the genomic landscape of lung cancer in never-/light-smokers and smokers is predominantly differentiated by somatic mutations and not copy number alterations.

11.
Biomark Res ; 11(1): 31, 2023 Mar 16.
Article in English | MEDLINE | ID: mdl-36927800

ABSTRACT

BACKGROUND: Studies have not systematically compared the ability to verify performance of prognostic transcripts in paired bulk mononuclear cells versus viable CD34-expressing leukemic blasts from patients with acute myeloid leukemia. We hypothesized that examining the homogenous leukemic blasts will yield different biological information and may improve prognostic performance of expression biomarkers. METHODS: To assess the impact of cellular heterogeneity on expression biomarkers in acute myeloid leukemia, we systematically examined paired mononuclear cells and viable CD34-expressing leukemic blasts from SWOG diagnostic specimens. After enrichment, patients were assigned into discovery and validation cohorts based on availability of extracted RNA. Analyses of RNA sequencing data examined how enrichment impacted differentially expressed genes associated with pre-analytic variables, patient characteristics, and clinical outcomes. RESULTS: Blast enrichment yielded significantly different expression profiles and biological pathways associated with clinical characteristics (e.g., cytogenetics). Although numerous differentially expressed genes were associated with clinical outcomes, most lost their prognostic significance in the mononuclear cells and blasts after adjusting for age and ELN risk, with only 11 genes remaining significant for overall survival in both cell populations (CEP70, COMMD7, DNMT3B, ECE1, LNX2, NEGR1, PIK3C2B, SEMA4D, SMAD2, TAF8, ZNF444). To examine the impact of enrichment on biomarker verification, these 11 candidate biomarkers were examined by quantitative RT/PCR in the validation cohort. After adjusting for ELN risk and age, expression of 4 genes (CEP70, DNMT3B, ECE1, and PIK3CB) remained significantly associated with overall survival in the blasts, while none met statistical significance in mononuclear cells. CONCLUSIONS: This study provides insights into biological information gained/lost by examining viable CD34-expressing leukemic blasts versus mononuclear cells from the same patient and shows an improved verification rate for expression biomarkers in blasts.

12.
Cancer Cell ; 40(4): 393-409.e9, 2022 04 11.
Article in English | MEDLINE | ID: mdl-35413271

ABSTRACT

CD4+ T cells that recognize tumor antigens are required for immune checkpoint inhibitor efficacy in murine models, but their contributions in human cancer are unclear. We used single-cell RNA sequencing and T cell receptor sequences to identify signatures and functional correlates of tumor-specific CD4+ T cells infiltrating human melanoma. Conventional CD4+ T cells that recognize tumor neoantigens express CXCL13 and are subdivided into clusters expressing memory and T follicular helper markers, and those expressing cytolytic markers, inhibitory receptors, and IFN-γ. The frequency of CXCL13+ CD4+ T cells in the tumor correlated with the transcriptional states of CD8+ T cells and macrophages, maturation of B cells, and patient survival. Similar correlations were observed in a breast cancer cohort. These results identify phenotypes and functional correlates of tumor-specific CD4+ T cells in melanoma and suggest the possibility of using such cells to modify the tumor microenvironment.


Subject(s)
CD8-Positive T-Lymphocytes , Melanoma , Animals , Antigens, Neoplasm/genetics , CD4-Positive T-Lymphocytes , Humans , Macrophages , Melanoma/genetics , Mice , Tumor Microenvironment
13.
J Biol Chem ; 285(47): 36267-74, 2010 Nov 19.
Article in English | MEDLINE | ID: mdl-20813845

ABSTRACT

Cell reprogramming from a quiescent to proliferative state requires coordinate activation of multiple -omic networks. These networks activate histones, increase cellular bioenergetics and the synthesis of macromolecules required for cell proliferation. However, mechanisms that coordinate the regulation of these interconnected networks are not fully understood. The oncogene c-Myc (Myc) activates cellular metabolism and global chromatin remodeling. Here we tested for an interconnection between Myc regulation of metabolism and acetylation of histones. Using [(13)C(6)]glucose and a combination of GC/MS and LC/ESI tandem mass spectrometry, we determined the fractional incorporation of (13)C-labeled 2-carbon fragments into the fatty acid palmitate, and acetyl-lysines at the N-terminal tail of histone H4 in myc(-/-) and myc(+/+) Rat1A fibroblasts. Our data demonstrate that Myc increases mitochondrial synthesis of acetyl-CoA, as the de novo synthesis of (13)C-labeled palmitate was increased 2-fold in Myc-expressing cells. Additionally, Myc induced a forty percent increase in (13)C-labeled acetyl-CoA on H4-K16. This is linked to the capacity of Myc to increase mitochondrial production of acetyl-CoA, as we show that mitochondria provide 50% of the acetyl groups on H4-K16. These data point to a key role for Myc in directing the interconnection of -omic networks, and in particular, epigenetic modification of proteins in response to proliferative signals.


Subject(s)
Acetyl Coenzyme A/metabolism , Cell Cycle/physiology , Fibroblasts/metabolism , Histones/metabolism , Mitochondria/metabolism , Proto-Oncogene Proteins c-myc/physiology , Acetylation , Animals , Animals, Genetically Modified , Carbon Isotopes , Gas Chromatography-Mass Spectrometry , Glucose/metabolism , Lipids/analysis , Lysine/metabolism , Palmitates/metabolism , Protein Processing, Post-Translational , Rats , Tandem Mass Spectrometry
14.
Mol Cell Proteomics ; 8(3): 451-66, 2009 Mar.
Article in English | MEDLINE | ID: mdl-18984577

ABSTRACT

We integrated five sets of proteomics data profiling the constituents of cerebrospinal fluid (CSF) derived from Huntington disease (HD)-affected and -unaffected individuals with genomics data profiling various human and mouse tissues, including the human HD brain. Based on an integrated analysis, we found that brain-specific proteins are 1.8 times more likely to be observed in CSF than in plasma, that brain-specific proteins tend to decrease in HD CSF compared with unaffected CSF, and that 81% of brain-specific proteins have quantitative changes concordant with transcriptional changes identified in different regions of HD brain. The proteins found to increase in HD CSF tend to be liver-associated. These protein changes are consistent with neurodegeneration, microgliosis, and astrocytosis known to occur in HD. We also discuss concordance between laboratories and find that ratios of individual proteins can vary greatly, but the overall trends with respect to brain or liver specificity were consistent. Concordance is highest between the two laboratories observing the largest numbers of proteins.


Subject(s)
Brain/metabolism , Cerebrospinal Fluid Proteins/metabolism , Huntington Disease/cerebrospinal fluid , Animals , Cerebrospinal Fluid Proteins/genetics , Gene Expression Profiling , Humans , Laboratories , Mice , Organ Specificity , Proteomics
15.
J Clin Invest ; 131(16)2021 08 16.
Article in English | MEDLINE | ID: mdl-34396986

ABSTRACT

Therapeutic vaccines that augment T cell responses to tumor antigens have been limited by poor potency in clinical trials. In contrast, the transfer of T cells modified with foreign transgenes frequently induces potent endogenous T cell responses to epitopes in the transgene product, and these responses are undesirable, because they lead to rejection of the transferred T cells. We sought to harness gene-modified T cells as a vaccine platform and developed cancer vaccines composed of autologous T cells modified with tumor antigens and additional adjuvant signals (Tvax). T cells expressing model antigens and a broad range of tumor neoantigens induced robust and durable T cell responses through cross-presentation of antigens by host DCs. Providing Tvax with signals such as CD80, CD137L, IFN-ß, IL-12, GM-CSF, and FLT3L enhanced T cell priming. Coexpression of IL-12 and GM-CSF induced the strongest CD4+ and CD8+ T cell responses through complimentary effects on the recruitment and activation of DCs, mediated by autocrine IL-12 receptor signaling in the Tvax. Therapeutic vaccination with Tvax and adjuvants showed antitumor activity in subcutaneous and metastatic preclinical mouse models. Human T cells modified with neoantigens readily activated specific T cells derived from patients, providing a path for clinical translation of this therapeutic platform in cancer.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Cancer Vaccines/therapeutic use , Adjuvants, Immunologic/administration & dosage , Allografts , Animals , Antigen Presentation , Antigens, Neoplasm/administration & dosage , Autografts , CD8-Positive T-Lymphocytes/transplantation , Cancer Vaccines/immunology , Cross Reactions/immunology , Dendritic Cells/immunology , Female , Humans , Immunologic Memory , Immunotherapy, Adoptive , Interleukin-12/immunology , Lymphoid Tissue/immunology , Male , Melanoma, Experimental/immunology , Melanoma, Experimental/therapy , Mice , Mice, Inbred C57BL , Mice, Knockout , Translational Research, Biomedical
16.
Nat Commun ; 12(1): 4217, 2021 07 09.
Article in English | MEDLINE | ID: mdl-34244513

ABSTRACT

The functional consequences of genetic variants within 5' untranslated regions (UTRs) on a genome-wide scale are poorly understood in disease. Here we develop a high-throughput multi-layer functional genomics method called PLUMAGE (Pooled full-length UTR Multiplex Assay on Gene Expression) to quantify the molecular consequences of somatic 5' UTR mutations in human prostate cancer. We show that 5' UTR mutations can control transcript levels and mRNA translation rates through the creation of DNA binding elements or RNA-based cis-regulatory motifs. We discover that point mutations can simultaneously impact transcript and translation levels of the same gene. We provide evidence that functional 5' UTR mutations in the MAP kinase signaling pathway can upregulate pathway-specific gene expression and are associated with clinical outcomes. Our study reveals the diverse mechanisms by which the mutational landscape of 5' UTRs can co-opt gene expression and demonstrates that single nucleotide alterations within 5' UTRs are functional in cancer.


Subject(s)
5' Untranslated Regions/genetics , DNA Mutational Analysis/methods , Gene Expression Regulation, Neoplastic , Genomics/methods , Prostatic Neoplasms/genetics , Cell Line, Tumor , HEK293 Cells , High-Throughput Screening Assays , Humans , Male , Point Mutation , Prostate/pathology , Prostatic Neoplasms/pathology , Protein Biosynthesis/genetics , RNA-Seq
17.
Cancer Immunol Res ; 7(6): 910-922, 2019 06.
Article in English | MEDLINE | ID: mdl-31043415

ABSTRACT

T cells specific for neoantigens encoded by mutated genes in cancers are increasingly recognized as mediators of tumor destruction after immune-checkpoint inhibitor therapy or adoptive cell transfer. Much of the focus has been on identifying epitopes presented to CD8+ T cells by class I MHC. However, CD4+ class II MHC-restricted T cells have been shown to have an important role in antitumor immunity. Unfortunately, the vast majority of neoantigens recognized by CD8+ or CD4+ T cells in cancer patients result from random mutations and are patient-specific. Here, we screened the blood of 5 non-small cell lung cancer (NSCLC) patients for T-cell responses to candidate mutation-encoded neoepitopes. T-cell responses were detected to 8.8% of screened antigens, with 1 to 7 antigens identified per patient. A majority of responses were to random, patient-specific mutations. However, CD4+ T cells that recognized the recurrent KRAS G12V and the ERBB2 (Her2) internal tandem duplication (ITD) oncogenic driver mutations, but not the corresponding wild-type sequences, were identified in two patients. Two different T-cell receptors (TCR) specific for KRAS G12V and one T-cell receptor specific for Her2-ITD were isolated and conferred antigen specificity when transfected into T cells. Deep sequencing identified the Her2-ITD-specific TCR in the tumor but not nonadjacent lung. Our results showed that CD4+ T-cell responses to neoantigens, including recurrent driver mutations, can be derived from the blood of NSCLC patients. These data support the use of adoptive transfer or vaccination to augment CD4+ neoantigen-specific T cells and elucidate their role in human antitumor immunity.


Subject(s)
Antigens, Neoplasm/immunology , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/metabolism , Lung Neoplasms/genetics , Lung Neoplasms/immunology , Mutation , Proto-Oncogene Proteins p21(ras)/genetics , Receptor, ErbB-2/genetics , Aged , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/immunology , Cell Line, Tumor , Computational Biology/methods , Female , Gene Expression , Humans , Lung Neoplasms/diagnosis , Lung Neoplasms/therapy , Lymphocyte Activation , Lymphocytes, Tumor-Infiltrating/immunology , Lymphocytes, Tumor-Infiltrating/metabolism , Male , Middle Aged , Neoplasm Staging , RNA, Messenger , Transcriptome
18.
Methods Mol Biol ; 428: 369-82, 2008.
Article in English | MEDLINE | ID: mdl-18287783

ABSTRACT

The analysis of protein mixtures by liquid chromatography-mass spectrometry (LCMS) requires tools for viewing and navigating LC-MS data, locating peptides in LC-MS data, and eliminating low-quality peptides. msInspect, an open source platform, can carry out these steps for single experiments and can align and normalize peptide features in comparative studies with multiple LC-MS runs. In addition, msInspect can analyze quantitative studies with and without isotopic labels to generate peptide arrays.


Subject(s)
Chromatography, Liquid/statistics & numerical data , Mass Spectrometry/statistics & numerical data , Proteomics/statistics & numerical data , Software , Algorithms , Data Interpretation, Statistical , Humans , Peptides/analysis , Protein Array Analysis/statistics & numerical data , Proteome/analysis
19.
J Clin Invest ; 128(4): 1563-1568, 2018 04 02.
Article in English | MEDLINE | ID: mdl-29360643

ABSTRACT

T cells specific for neoantigens encoded by mutated genes in cancers are increasingly recognized as mediators of tumor destruction after immune checkpoint inhibitor therapy or adoptive cell transfer. Unfortunately, most neoantigens result from random mutations and are patient specific, and some cancers contain few mutations to serve as potential antigens. We describe a patient with stage IV acral melanoma who achieved a complete response following adoptive transfer of tumor-infiltrating lymphocytes (TILs). Tumor exome sequencing surprisingly revealed fewer than 30 nonsynonymous somatic mutations, including oncogenic BRAFV600E. Analysis of the specificity of TILs identified rare CD4+ T cells specific for BRAFV600E and diverse CD8+ T cells reactive to nonmutated self-antigens. These specificities increased in blood after TIL transfer and persisted long-term, suggesting they contributed to the effective antitumor immune response. Gene transfer of the BRAFV600E-specific T cell receptor (TCR) conferred recognition of class II MHC-positive cells expressing the BRAF mutation. Therapy with TCR-engineered BRAFV600E-specific CD4+ T cells may have direct antitumor effects and augment CD8+ T cell responses to self- and/or mutated tumor antigens in patients with BRAF-mutated cancers.


Subject(s)
Antigens, Neoplasm , CD4-Positive T-Lymphocytes , Immunotherapy, Adoptive , Melanoma , Mutation, Missense , Proto-Oncogene Proteins B-raf , Receptors, Chimeric Antigen/immunology , Amino Acid Substitution , Antigens, Neoplasm/genetics , Antigens, Neoplasm/immunology , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/pathology , CD4-Positive T-Lymphocytes/transplantation , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/pathology , Humans , Male , Melanoma/genetics , Melanoma/immunology , Melanoma/pathology , Melanoma/therapy , Middle Aged , Proto-Oncogene Proteins B-raf/genetics , Proto-Oncogene Proteins B-raf/immunology , Receptors, Chimeric Antigen/genetics
20.
Bioinformatics ; 22(15): 1902-9, 2006 Aug 01.
Article in English | MEDLINE | ID: mdl-16766559

ABSTRACT

MOTIVATION: Comparing two or more complex protein mixtures using liquid chromatography mass spectrometry (LC-MS) requires multiple analysis steps to locate and quantitate natural peptides within a single experiment and to align and normalize findings across multiple experiments. RESULTS: We describe msInspect, an open-source application comprising algorithms and visualization tools for the analysis of multiple LC-MS experimental measurements. The platform integrates novel algorithms for detecting signatures of natural peptides within a single LC-MS measurement and combines multiple experimental measurements into a peptide array, which may then be mined using analysis tools traditionally applied to genomic array analysis. The platform supports quantitation by both label-free and isotopic labeling approaches. The software implementation has been designed so that many key components may be easily replaced, making it useful as a workbench for integrating other novel algorithms developed by a growing research community. AVAILABILITY: The msInspect software is distributed freely under an Apache 2.0 license. The software as well as a Zip file with all peptide feature files and scripts needed to generate the tables and figures in this article are available at http://proteomics.fhcrc.org/.


Subject(s)
Algorithms , Chromatography, Liquid/methods , Mass Spectrometry/methods , Peptide Mapping/methods , Proteins/analysis , Proteins/chemistry , Software , User-Computer Interface , Complex Mixtures/analysis , Computer Graphics , Systems Integration
SELECTION OF CITATIONS
SEARCH DETAIL