Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters

Database
Language
Publication year range
1.
Phys Rev Lett ; 111(16): 166101, 2013 Oct 18.
Article in English | MEDLINE | ID: mdl-24182283

ABSTRACT

We show ferromagnetic properties of hydrogen-functionalized epitaxial graphene on SiC. Ferromagnetism in such a material is not directly evident as it is inherently composed of only nonmagnetic constituents. Our results nevertheless show strong ferromagnetism with a saturation of 0.9µ(B)/hexagon projected area, which cannot be explained by simple magnetic impurities. The ferromagnetism is unique to hydrogenated epitaxial graphene on SiC, where interactions with the interfacial buffer layer play a crucial role. We argue that the origin of the observed ferromagnetism is governed by electron correlation effects of the narrow Si dangling bond states in the buffer layer exchange coupled to localized states in the hydrogenated graphene layer. This forms a quasi-three-dimensional ferromagnet with a Curie temperature higher than 300 K.

2.
Phys Rev Lett ; 105(21): 216102, 2010 Nov 19.
Article in English | MEDLINE | ID: mdl-21231325

ABSTRACT

We have studied large areas of (√3×√3)R30° graphene commensurate with a Pt(111) substrate. A combination of experimental techniques with ab initio density functional theory indicates that this structure is related to a reconstruction at the Pt surface, consisting of an ordered vacancy network formed in the outermost Pt layer and a graphene layer covalently bound to the Pt substrate. The formation of this reconstruction is enhanced if low temperatures and polycyclic aromatic hydrocarbons are used as molecular precursors for epitaxial growth of the graphene layers.


Subject(s)
Graphite/chemistry , Models, Chemical , Platinum/chemistry , Microscopy, Scanning Tunneling , Quantum Theory
3.
Nanotechnology ; 21(6): 065302, 2010 Feb 10.
Article in English | MEDLINE | ID: mdl-20057035

ABSTRACT

Many large molecular complexes are limited in thin film applications by their insufficient thermal stability, which excludes deposition via commonly used vapour phase deposition methods. Here we demonstrate an alternative way of monolayer formation of large molecules by a simple spray coating method under ambient conditions. This technique has been successfully applied on C(60) dissolved in toluene and carbon disulfide. Monolayer thick C(60) films have been formed on graphite and gold surfaces at particular deposition parameters, as confirmed by atomic force and scanning tunnelling microscopies. Structural and electronic properties of spray coated C(60) films on Au(111) have been found comparable to thermally evaporated C(60). We attribute the monolayer formation in spray coating to a crystallization process mediated by an ultrathin solution film on a sample surface.

4.
J Chem Phys ; 129(4): 044704, 2008 Jul 28.
Article in English | MEDLINE | ID: mdl-18681667

ABSTRACT

Terahertz transient conductivity measurements are performed on pentacene single crystals, which directly demonstrate a strong coupling of charge carriers to low frequency molecular motions with energies centered around 1.1 THz. We present evidence that the strong coupling to low frequency motions is the factor limiting the conductivity in these organic semiconductors. Our observations explain the apparent paradox of the "bandlike" temperature dependence of the conductivity beyond the validity limit of the band model.

5.
J Phys Condens Matter ; 29(6): 065001, 2017 Feb 15.
Article in English | MEDLINE | ID: mdl-27991424

ABSTRACT

The sensitivity of quasi-free standing epitaxial graphene for NH3 detection is strongly enhanced by chemical functionalization with cobalt porphyrins resulting in a detection limit well below 100 ppb. Hybridization between NH3 and cobalt porphyrins induces a charge transfer to graphene and results in a shift of the graphene Fermi-level as detected by Hall measurements and theoretically explained by electronic structure calculations.

SELECTION OF CITATIONS
SEARCH DETAIL