Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 135
Filter
1.
Cell ; 169(5): 807-823.e19, 2017 May 18.
Article in English | MEDLINE | ID: mdl-28479188

ABSTRACT

Dormant hematopoietic stem cells (dHSCs) are atop the hematopoietic hierarchy. The molecular identity of dHSCs and the mechanisms regulating their maintenance or exit from dormancy remain uncertain. Here, we use single-cell RNA sequencing (RNA-seq) analysis to show that the transition from dormancy toward cell-cycle entry is a continuous developmental path associated with upregulation of biosynthetic processes rather than a stepwise progression. In addition, low Myc levels and high expression of a retinoic acid program are characteristic for dHSCs. To follow the behavior of dHSCs in situ, a Gprc5c-controlled reporter mouse was established. Treatment with all-trans retinoic acid antagonizes stress-induced activation of dHSCs by restricting protein translation and levels of reactive oxygen species (ROS) and Myc. Mice maintained on a vitamin A-free diet lose HSCs and show a disrupted re-entry into dormancy after exposure to inflammatory stress stimuli. Our results highlight the impact of dietary vitamin A on the regulation of cell-cycle-mediated stem cell plasticity. VIDEO ABSTRACT.


Subject(s)
Hematopoietic Stem Cells/cytology , Signal Transduction , Tretinoin/pharmacology , Vitamin A/administration & dosage , Animals , Biosynthetic Pathways , Cell Culture Techniques , Cell Cycle/drug effects , Cell Survival , Diet , Gene Expression Profiling , Hematopoietic Stem Cells/drug effects , Mice , Poly I-C/pharmacology , Reactive Oxygen Species/metabolism , Receptors, G-Protein-Coupled/metabolism , Single-Cell Analysis , Stress, Physiological , Vitamin A/pharmacology , Vitamins/administration & dosage , Vitamins/pharmacology
2.
Mol Pharmacol ; 105(2): 84-96, 2024 Jan 10.
Article in English | MEDLINE | ID: mdl-37977823

ABSTRACT

The zebrafish (Danio rerio) histamine H1 receptor gene (zfH1R) was cloned in 2007 and reported to be involved in fish locomotion. Yet, no detailed characterization of its pharmacology and signaling properties have so far been reported. In this study, we pharmacologically characterized the zfH1R expressed in HEK-293T cells by means of [3H]-mepyramine binding and G protein-signaling assays. The zfH1R [dissociation constant (KD), 0.7 nM] displayed similar affinity for the antagonist [3H]-mepyramine as the human histamine H1 receptor (hH1R) (KD, 1.5 nM), whereas the affinity for histamine is 100-fold higher than for the human H1R. The zfH1R couples to Gαq/11 proteins and activates several reporter genes, i.e., NFAT, NFÏ°B, CRE, VEGF, COX-2, SRE, and AP-1, and zfH1R-mediated signaling is prevented by the Gαq/11 inhibitor YM-254890 and the antagonist mepyramine. Molecular modeling of the zfH1R and human H1R shows that the binding pockets are identical, implying that variations along the ligand binding pathway could underly the differences in histamine affinity instead. Targeting differentially charged residues in extracellular loop 2 (ECL2) using site-directed mutagenesis revealed that Arg21045x55 is most likely involved in the binding process of histamine in zfH1R. This study aids the understanding of the pharmacological differences between H1R orthologs and the role of ECL2 in histamine binding and provides fundamental information for the understanding of the histaminergic system in the zebrafish. SIGNIFICANCE STATEMENT: The use of the zebrafish as in vivo models in neuroscience is growing exponentially, which asks for detailed characterization of the aminergic neurotransmitter systems in this model. This study is the first to pharmacologically characterize the zebrafish histamine H1 receptor after expression in HEK-293T cells. The results show a high pharmacological and functional resemblance with the human ortholog but also reveal interesting structural differences and unveils an important role of the second extracellular loop in histamine binding.


Subject(s)
Histamine , Receptors, Histamine H1 , Animals , Humans , Receptors, Histamine H1/genetics , Receptors, Histamine H1/metabolism , Pyrilamine/pharmacology , Pyrilamine/metabolism , Zebrafish , Signal Transduction
3.
Breast Cancer Res Treat ; 206(2): 245-259, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38643348

ABSTRACT

PURPOSE: Programmed death receptor ligand-1 (PD-L1) expression and tumor mutational burden (TMB) are approved screening biomarkers for immune checkpoint inhibition (ICI) in advanced triple negative breast cancer. We examined these biomarkers along with characterization of the tumor microenvironment (TME) between breast tumors (BrTs), axillary metastases (AxMs), liver metastases (LvMs), non-axillary lymph node metastases, and non-liver metastases to determine differences related to site of metastatic disease. METHODS: 3076 unpaired biopsies from breast cancer patients were analyzed using whole transcriptome sequencing and NextGen DNA depicting TMB within tumor sites. The PD-L1 positivity was determined with VENTANA PD-L1 (SP142) assay. The immune cell fraction within the TME was calculated by QuantiSeq and MCP-counter. RESULTS: Compared to BrT, more LvM samples had a high TMB (≥ 10 mutations/Mb) and fewer LvM samples had PD-L1+ expression. Evaluation of the TME revealed that LvM sites harbored lower infiltration of adaptive immune cells, such as CD4+, CD8+, and regulatory T-cells compared with the BrT foci. We saw differences in innate immune cell infiltration in LvM compared to BrT, including neutrophils and NK cells. CONCLUSIONS: LvMs are less likely to express PD-L1+ tumor cells but more likely to harbor high TMB as compared to BrTs. Unlike AxMs, LvMs represent a more immunosuppressed TME and demonstrate lower gene expression associated with adaptive immunity compared to BrTs. These findings suggest biopsy site be considered when interpreting results that influence ICI use for treatment and further investigation of immune composition and biomarkers expression by metastatic site.


Subject(s)
B7-H1 Antigen , Biomarkers, Tumor , Breast Neoplasms , Liver Neoplasms , Tumor Microenvironment , Humans , Tumor Microenvironment/immunology , Female , Liver Neoplasms/secondary , Liver Neoplasms/immunology , Liver Neoplasms/genetics , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , B7-H1 Antigen/metabolism , B7-H1 Antigen/genetics , Breast Neoplasms/pathology , Breast Neoplasms/immunology , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Mutation , Lymphatic Metastasis , Middle Aged , Lymphocytes, Tumor-Infiltrating/immunology , Lymphocytes, Tumor-Infiltrating/metabolism
4.
Proc Natl Acad Sci U S A ; 117(28): 16313-16323, 2020 07 14.
Article in English | MEDLINE | ID: mdl-32601209

ABSTRACT

Peroxiredoxins are central to cellular redox homeostasis and signaling. They serve as peroxide scavengers, sensors, signal transducers, and chaperones, depending on conditions and context. Typical 2-Cys peroxiredoxins are known to switch between different oligomeric states, depending on redox state, pH, posttranslational modifications, and other factors. Quaternary states and their changes are closely connected to peroxiredoxin activity and function but so far have been studied, almost exclusively, outside the context of the living cell. Here we introduce the use of homo-FRET (Förster resonance energy transfer between identical fluorophores) fluorescence polarization to monitor dynamic changes in peroxiredoxin quaternary structure inside the crowded environment of living cells. Using the approach, we confirm peroxide- and thioredoxin-related quaternary transitions to take place in cellulo and observe that the relationship between dimer-decamer transitions and intersubunit disulfide bond formation is more complex than previously thought. Furthermore, we demonstrate the use of the approach to compare different peroxiredoxin isoforms and to identify mutations and small molecules affecting the oligomeric state inside cells. Mutagenesis experiments reveal that the dimer-decamer equilibrium is delicately balanced and can be shifted by single-atom structural changes. We show how to use this insight to improve the design of peroxiredoxin-based redox biosensors.


Subject(s)
Peroxiredoxins/chemistry , Cell Line , Fluorescence Resonance Energy Transfer , Homeodomain Proteins/chemistry , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Humans , Hydrogen Peroxide/metabolism , Hydrogen Peroxide/pharmacology , Luminescent Proteins/chemistry , Luminescent Proteins/genetics , Luminescent Proteins/metabolism , Mutation , Peroxiredoxins/genetics , Peroxiredoxins/metabolism , Protein Multimerization/drug effects , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism
5.
Am J Physiol Renal Physiol ; 321(2): F245-F254, 2021 08 01.
Article in English | MEDLINE | ID: mdl-34229479

ABSTRACT

Large-conductance K+ (BK) channels expressed in intercalated cells (ICs) in the aldosterone-sensitive distal nephron (ASDN) mediate flow-induced K+ secretion. In the ASDN of mice and rabbits, IC BK channel expression and activity increase with a high-K+ diet. In cell culture, the long isoform of with-no-lysine kinase 1 (L-WNK1) increases BK channel expression and activity. Apical L-WNK1 expression is selectively enhanced in ICs in the ASDN of rabbits on a high-K+ diet, suggesting that L-WNK1 contributes to BK channel regulation by dietary K+. We examined the role of IC L-WNK1 expression in enhancing BK channel activity in response to a high-K+ diet. Mice with IC-selective deletion of L-WNK1 (IC-L-WNK1-KO) and littermate control mice were placed on a high-K+ (5% K+, as KCl) diet for 10 or more days. IC-L-WNK1-KO mice exhibited reduced IC apical + subapical α-subunit expression and BK channel-dependent whole cell currents compared with controls. Six-hour urinary K+ excretion in response a saline load was similar in IC-L-WNK1-KO mice and controls. The observations that IC-L-WNK1-KO mice on a high-K+ diet have higher blood K+ concentration and reduced IC BK channel activity are consistent with impaired urinary K+ secretion, demonstrating that IC L-WNK1 has a role in the renal adaptation to a high-K+ diet.NEW & NOTEWORTHY When mice are placed on a high-K+ diet, genetic disruption of the long form of with no lysine kinase 1 (L-WNK1) in intercalated cells reduced relative apical + subapical localization of the large-conductance K+ channel, blunted large-conductance K+ channel currents in intercalated cells, and increased blood K+ concentration. These data confirm an in vivo role of L-WNK1 in intercalated cells in adaptation to a high-K+ diet.


Subject(s)
Kidney/metabolism , Large-Conductance Calcium-Activated Potassium Channels/metabolism , Nephrons/metabolism , Potassium/metabolism , WNK Lysine-Deficient Protein Kinase 1/metabolism , Animals , Ion Transport , Kidney/cytology , Mice , WNK Lysine-Deficient Protein Kinase 1/genetics
6.
Am J Physiol Cell Physiol ; 319(1): C136-C147, 2020 07 01.
Article in English | MEDLINE | ID: mdl-32401606

ABSTRACT

The cortical collecting duct (CCD) of the mammalian kidney plays a major role in the maintenance of total body electrolyte, acid/base, and fluid homeostasis by tubular reabsorption and excretion. The mammalian CCD is heterogeneous, composed of Na+-absorbing principal cells (PCs) and acid-base-transporting intercalated cells (ICs). Perturbations in luminal flow rate alter hydrodynamic forces to which these cells in the cylindrical tubules are exposed. However, most studies of tubular ion transport have been performed in cell monolayers grown on or epithelial sheets affixed to a flat support, since analysis of transepithelial transport in native tubules by in vitro microperfusion requires considerable expertise. Here, we report on the generation and characterization of an in vitro, perfusable three-dimensional kidney CCD model (3D CCD), in which immortalized mouse PC-like mpkCCD cells are seeded within a cylindrical channel embedded within an engineered extracellular matrix and subjected to luminal fluid flow. We find that a tight epithelial barrier composed of differentiated and polarized PCs forms within 1 wk. Immunofluorescence microscopy reveals the apical epithelial Na+ channel ENaC and basolateral Na+/K+-ATPase. On cessation of luminal flow, benzamil-inhibitable cell doming is observed within these 3D CCDs consistent with the presence of ENaC-mediated Na+ absorption. Our 3D CCD provides a geometrically and microphysiologically relevant platform for studying the development and physiology of renal tubule segments.


Subject(s)
Kidney Tubules, Collecting/anatomy & histology , Kidney Tubules, Collecting/physiology , Models, Biological , Perfusion/methods , Printing, Three-Dimensional , Animals , Biological Transport/physiology , Cell Line, Transformed , Mice , Microscopy, Fluorescence/methods
7.
Hum Mol Genet ; 27(9): 1533-1544, 2018 05 01.
Article in English | MEDLINE | ID: mdl-29452352

ABSTRACT

Cardiac calsequestrin (Casq2) associates with the ryanodine receptor 2 channel in the junctional sarcoplasmic reticulum to regulate Ca2+ release into the cytoplasm. Patients carrying mutations in CASQ2 display low resting heart rates under basal conditions and stress-induced polymorphic ventricular tachycardia (CPVT). In this study, we generate and characterize novel conditional deletion and conditional rescue mouse models to test the influence of developmental programs on the heart rate and CPVT phenotypes. We also compare the requirements for Casq2 function in the cardiac conduction system (CCS) and in working cardiomyocytes. Our study shows that the CPVT phenotype is dependent upon concurrent loss of Casq2 function in both the CCS and in working cardiomyocytes. Accordingly, restoration of Casq2 in only the CCS prevents CPVT. In addition, occurrence of CPVT is independent of the developmental history of Casq2-deficiency. In contrast, resting heart rate depends upon Casq2 gene activity only in the CCS and upon developmental history. Finally, our data support a model where low basal heart rate is a significant risk factor for CPVT.


Subject(s)
Calsequestrin/metabolism , Tachycardia, Ventricular/metabolism , Tamoxifen/pharmacology , Animals , Calcium/metabolism , Calsequestrin/genetics , Female , Heart Rate/drug effects , Immunohistochemistry , Male , Mice , Mice, Mutant Strains , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/metabolism , Tachycardia, Ventricular/genetics
8.
J Am Chem Soc ; 141(22): 8741-8745, 2019 06 05.
Article in English | MEDLINE | ID: mdl-31117662

ABSTRACT

Photocycloadditions are often typified by the oxetane-forming Paternò-Büchi reaction. However, the mechanistic constraints of carbonyl excitation and olefin interception have limited this attractive oxetane-forming pathway. Here we describe the use of a Cu(I) precatalyst that achieves selective olefin activation via coordination to the metal center. Significantly, this intermolecular 2 + 2 carbonyl-olefin photocycloaddition engages alkyl ketones, which are more challenging to accommodate via direct irradiation pathways. Mechanistic investigations support the in situ formation of a Cu-norbornene resting state that undergoes a MLCT leading to oxetane formation.

9.
Am J Physiol Renal Physiol ; 317(4): F815-F824, 2019 10 01.
Article in English | MEDLINE | ID: mdl-31364378

ABSTRACT

Downregulation of heme oxygenase-1 (HO-1), cyclooxygenase-2 (COX2), and nitric oxide synthase-2 (NOS2) in the kidneys of Dahl rodents causes salt sensitivity, while restoring their expression aids in Na+ excretion and blood pressure reduction. Loading cholesterol into collecting duct (CD) cells represses fluid shear stress (FSS)-mediated COX2 activity. Thus, we hypothesized that cholesterol represses flow-responsive genes necessary to effectuate Na+ excretion. To this end, CD cells were used to test whether FSS induces these genes and if cholesterol loading represses them. Mice fed either 0% or 1% cholesterol diet were injected with saline, urine volume and electrolytes were measured, and renal gene expression determined. FSS-exposed CD cells demonstrated increases in HO-1 mRNA by 350-fold, COX2 by 25-fold, and NOS2 by 8-fold in sheared cells compared with static cells (P < 0.01). Immunoblot analysis of sheared cells showed increases in HO-1, COX2, and NOS2 protein, whereas conditioned media contained more HO-1 and PGE2 than static cells. Cholesterol loading repressed the sheared mediated protein abundance of HO-1 and NOS2 as well as HO-1 and PGE2 concentrations in media. In cholesterol-fed mice, urine volume was less at 6 h after injection of isotonic saline (P < 0.05). Urinary Na+ concentration, urinary K+ concentration, and osmolality were greater, whereas Na+ excretion was less, at the 6-h urine collection time point in cholesterol-fed versus control mice (P < 0.05). Renal cortical and medullary HO-1 (P < 0.05) and NOS2 (P < 0.05) mRNA were repressed in cholesterol-fed compared with control mice. Cholesterol acts to repress flow induced natriuretic gene expression, and this effect, in vivo, may contribute to renal Na+ avidity.


Subject(s)
Cholesterol/pharmacology , Gene Expression/drug effects , Kidney/drug effects , Kidney/metabolism , Animals , Blood Pressure , Cell Line , Cyclooxygenase 2/metabolism , Dinoprostone/metabolism , Heme Oxygenase (Decyclizing)/metabolism , Kidney Tubules, Collecting/metabolism , Mice , Nitric Oxide Synthase Type II/metabolism , Potassium/urine , Rats , Rats, Inbred Dahl , Sodium/urine , Sodium Chloride, Dietary , Urodynamics/drug effects
10.
Mol Pharmacol ; 94(2): 926-937, 2018 08.
Article in English | MEDLINE | ID: mdl-29895592

ABSTRACT

The inward rectifier potassium (Kir) channel Kir4.1 (KCNJ10) carries out important physiologic roles in epithelial cells of the kidney, astrocytes in the central nervous system, and stria vascularis of the inner ear. Loss-of-function mutations in KCNJ10 lead to EAST/SeSAME syndrome, which is characterized by epilepsy, ataxia, renal salt wasting, and sensorineural deafness. Although genetic approaches have been indispensable for establishing the importance of Kir4.1 in the normal function of these tissues, the availability of pharmacological tools for acutely manipulating the activity of Kir4.1 in genetically normal animals has been lacking. We therefore carried out a high-throughput screen of 76,575 compounds from the Vanderbilt Institute of Chemical Biology library for small-molecule modulators of Kir4.1. The most potent inhibitor identified was 2-(2-bromo-4-isopropylphenoxy)-N-(2,2,6,6-tetramethylpiperidin-4-yl)acetamide (VU0134992). In whole-cell patch-clamp electrophysiology experiments, VU0134992 inhibits Kir4.1 with an IC50 value of 0.97 µM and is 9-fold selective for homomeric Kir4.1 over Kir4.1/5.1 concatemeric channels (IC50 = 9 µM) at -120 mV. In thallium (Tl+) flux assays, VU0134992 is greater than 30-fold selective for Kir4.1 over Kir1.1, Kir2.1, and Kir2.2; is weakly active toward Kir2.3, Kir6.2/SUR1, and Kir7.1; and is equally active toward Kir3.1/3.2, Kir3.1/3.4, and Kir4.2. This potency and selectivity profile is superior to Kir4.1 inhibitors amitriptyline, nortriptyline, and fluoxetine. Medicinal chemistry identified components of VU0134992 that are critical for inhibiting Kir4.1. Patch-clamp electrophysiology, molecular modeling, and site-directed mutagenesis identified pore-lining glutamate 158 and isoleucine 159 as critical residues for block of the channel. VU0134992 displayed a large free unbound fraction (fu) in rat plasma (fu = 0.213). Consistent with the known role of Kir4.1 in renal function, oral dosing of VU0134992 led to a dose-dependent diuresis, natriuresis, and kaliuresis in rats. Thus, VU0134992 represents the first in vivo active tool compound for probing the therapeutic potential of Kir4.1 as a novel diuretic target for the treatment of hypertension.


Subject(s)
Potassium Channels, Inwardly Rectifying/antagonists & inhibitors , Potassium Channels, Inwardly Rectifying/chemistry , Small Molecule Libraries/administration & dosage , Small Molecule Libraries/pharmacology , Animals , Binding Sites , Diuretics/chemistry , Electrolytes , HEK293 Cells , Humans , Male , Models, Molecular , Molecular Docking Simulation , Molecular Structure , Mutagenesis, Site-Directed , Potassium Channels, Inwardly Rectifying/genetics , Rats , Small Molecule Libraries/chemistry , Substrate Specificity
11.
Nat Chem Biol ; 12(6): 437-43, 2016 06.
Article in English | MEDLINE | ID: mdl-27089028

ABSTRACT

Genetically encoded probes based on the H2O2-sensing proteins OxyR and Orp1 have greatly increased the ability to detect elevated H2O2 levels in stimulated or stressed cells. However, these proteins are not sensitive enough to monitor metabolic H2O2 baseline levels. Using yeast as a platform for probe development, we developed two peroxiredoxin-based H2O2 probes, roGFP2-Tsa2ΔCR and roGFP2-Tsa2ΔCPΔCR, that afford such sensitivity. These probes are ∼50% oxidized under 'normal' unstressed conditions and are equally responsive to increases and decreases in H2O2. Hence, they permit fully dynamic, real-time measurement of basal H2O2 levels, with subcellular resolution, in living cells. We demonstrate that expression of these probes does not alter endogenous H2O2 homeostasis. The roGFP2-Tsa2ΔCR probe revealed real-time interplay between basal H2O2 levels and partial oxygen pressure. Furthermore, it exposed asymmetry in H2O2 trafficking between the cytosol and mitochondrial matrix and a strong correlation between matrix H2O2 levels and cellular growth rate.


Subject(s)
Hydrogen Peroxide/analysis , Hydrogen Peroxide/metabolism , Molecular Probes/metabolism , Peroxiredoxins/metabolism , Cytosol/metabolism , Homeostasis , Mitochondria/metabolism , Oxygen/metabolism , Partial Pressure , Saccharomyces cerevisiae/cytology , Saccharomyces cerevisiae/growth & development , Saccharomyces cerevisiae/metabolism , Time Factors
12.
Int J Mol Sci ; 19(4)2018 Apr 19.
Article in English | MEDLINE | ID: mdl-29671795

ABSTRACT

Presynaptic histamine H3 receptors (H3R) act as auto- or heteroreceptors controlling, respectively, the release of histamine and of other neurotransmitters in the central nervous system (CNS). The extracellular levels of several neurotransmitters are enhanced by H3R antagonists, and there is a great interest for potent, brain-penetrating H3 receptor antagonists/inverse agonists to compensate for the neurotransmitter deficits present in various neurological disorders. We have shown that 1-[(benzylfuran-2-yl)methyl]piperidinyl-4-oxyl- and benzyl- derivatives of N-propylpentan-1-amines exhibit high in vitro potencies toward the guinea pig H3 receptor (jejunum), with pA2 = 8.47 and 7.79, respectively (the reference compound used was thioperamide with pA2 = 8.67). Furthermore, following the replacement of 4-hydroxypiperidine with a 3-(methylamino)propyloxy chain, the pA2 value for the first group decreased, whereas it increased for the second group. Here, we present data on the impact of elongating the aliphatic chain between the nitrogen of 4-hydroxypiperidine or 3-(methylamino)propan-1-ol and the lipophilic residue. Additionally, the most active compound in this series of non-imidazole H3 receptor antagonists/inverse agonists, i.e., ADS-003, was evaluated for its affinity to the recombinant rat and human histamine H3 receptors transiently expressed in HEK-293T cells. It was shown that ADS-003, given parenterally for 5 days, reduced the food intake of rats, as well as changed histamine and noradrenaline concentrations in the rats’ brain in a manner and degree similar to the reference H3 antagonist Ciproxifan.


Subject(s)
Histamine H3 Antagonists/chemistry , Histamine H3 Antagonists/pharmacology , Piperidines/chemistry , Piperidines/pharmacology , Receptors, Histamine H3/metabolism , Amination , Animals , Guinea Pigs , HEK293 Cells , Humans , Male , Rats , Rats, Wistar , Structure-Activity Relationship
13.
Molecules ; 23(2)2018 Feb 03.
Article in English | MEDLINE | ID: mdl-29401659

ABSTRACT

H3 receptors present on histaminergic and non-histaminergic neurons, act as autoreceptors or heteroreceptors controlling neurotransmitter release and synthesis. Previous, studies have found that the compound N-methyl-N-3-phenylalkyl-2-[2-(4-n-propylpiperazin-1-yl)-1,3-thiazol-5-yl]ethan-1-amine (ADS-531, 2c) exhibits high in vitro potency toward H3 guinea pig jejunal receptors, with pA2 = 8.27. To optimize the structure of the lead compound ADS-531, a series of 5-substituted-2-thiazol-4-n-propylpiperazines 3 were synthesized and subjected to in vitro pharmacological characterization; the alkyl chain between position 2 of the thiazole ring and the terminal secondary N-methylamino function was elongated from three to four methylene groups and the N-methylamino functionality was substituted by benzyl-, 2-phenylethyl-, and 3-phenyl-propyl- moieties. SAR studies on novel non-imidazole, 5-substituted-2-thiazol-4-n-propyl-piperazines 3 showed that the most active compound 3a (pA2 = 8.38), additionally possessed a weak competitive H1-antagonistic activity. Therefore, compound ADS-531, which did not exhibit any H1-antagonistic activity, was chosen for further evaluation for its affinity to the recombinant rat and human histamine H3 receptors (rH3R and hH3R, respectively). ADS-531 exhibited nanomolar affinity for both rH3R and hH3R receptors. It was also shown that, ADS-531 given subchronically to rats (s.c. 3 mg/kg, 5 days) penetrated the brain, where it affected dopamine, noradrenaline and serotonin concentration; however, it did not affect histamine concentration nor feeding behavior.


Subject(s)
Brain/drug effects , Histamine Antagonists/chemical synthesis , Piperazines/chemical synthesis , Receptors, Histamine H3/metabolism , Thiazoles/chemical synthesis , Animals , Blood-Brain Barrier/metabolism , Brain/cytology , Brain/metabolism , Brain Chemistry/physiology , Dopamine/metabolism , Feeding Behavior/physiology , Guinea Pigs , Histamine Antagonists/pharmacology , Humans , Injections, Subcutaneous , Jejunum/drug effects , Jejunum/metabolism , Ligands , Male , Neurons/cytology , Neurons/drug effects , Neurons/metabolism , Norepinephrine/metabolism , Permeability , Piperazines/pharmacology , Rats , Recombinant Proteins/metabolism , Serotonin/metabolism , Structure-Activity Relationship , Thiazoles/pharmacology
14.
Biochim Biophys Acta ; 1861(3): 249-59, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26743850

ABSTRACT

Pkh is the yeast ortholog of the mammalian 3-phosphoinositide-dependent protein kinase 1 (PDK1). Pkh phosphorylates the activation loop of Ypks, Tpks, Sch9 and also phosphorylates the eisosome components Lsp1 and Pil1, which play fundamental roles upstream of diverse signaling pathways, including the cell wall integrity and sphingosine/long-chain base (LCB) signaling pathways. In S. cerevisiae, two isoforms, ScPkh1 and ScPkh2, are required for cell viability, while only one ortholog exists in C. albicans, CaPkh2. In spite of the extensive information gathered on the role of Pkh in the LCB signaling, the yeast Pkh kinases are not known to bind lipids and previous studies did not identify PH domains in Pkh sequences. We now describe that the C-terminal region of CaPkh2 is required for its intrinsic kinase activity. In addition, we found that the C-terminal region of CaPkh2 enables its interaction with structural and signaling lipids. Our results further show that phosphatidylserine, phosphatidic acid, phosphatidylinositol (3,4 and 4,5)-biphosphates, and phosphatidylinositol (3,4,5)-trisphosphate inhibit Pkh activity, whereas sulfatide binds with high affinity but does not affect the intrinsic activity of CaPkh2. Interestingly, we identified that its human ortholog PDK1 also binds to sulfatide. We propose a mechanism by which lipids and dihydrosphingosine regulate CaPkh2 kinase activity by modulating the interaction of the C-terminal region with the kinase domain, while sulfatide-like lipids support localization CaPkh2 mediated by a C-terminal PH domain, without affecting kinase intrinsic activity.


Subject(s)
3-Phosphoinositide-Dependent Protein Kinases/metabolism , Candida albicans/enzymology , Fungal Proteins/metabolism , Lipid Metabolism , 3-Phosphoinositide-Dependent Protein Kinases/genetics , Amino Acid Sequence , Binding Sites , Candida albicans/genetics , Computational Biology , HEK293 Cells , Humans , Models, Molecular , Molecular Sequence Data , Phosphatidic Acids/metabolism , Phosphatidylinositol 4,5-Diphosphate/metabolism , Phosphatidylinositol Phosphates/metabolism , Phosphatidylserines/metabolism , Protein Binding , Protein Structure, Tertiary , Sphingosine/analogs & derivatives , Sphingosine/metabolism , Structure-Activity Relationship , Sulfoglycosphingolipids/metabolism , Transfection
15.
Gynecol Endocrinol ; 33(5): 378-382, 2017 May.
Article in English | MEDLINE | ID: mdl-28084176

ABSTRACT

Musculoskeletal pain (MSP) has been recently linked with high plasma leptin levels. Our objective was to study if obese women, who have higher leptin levels, could have a higher frequency of MSP. We studied 6079 Latin-American women, 40-59 years old. Their epidemiological data were recorded and the Menopause Rating Scale (MRS), Golberg Anxiety and Depression Scale and Insomnia Scale were applied. MSP was defined as a score ≥2 on MRS11. Women with MSP were slightly older, had fewer years of schooling and were more sedentary. They also complained of more severe menopausal symptoms (29.2% versus. 4.4%, p < 0.0001). Furthermore, they had a higher abdominal perimeter (87.2 ± 12.0 cm versus 84.6 ± 11.6 cm, p < 0.0001) and a higher prevalence of obesity (23.1% versus 15.2%, p < 0.0001). Compared to normal weight women, those with low body weight (IMC <18.5) showed a lower risk of MSP (OR 0.71; 95%CI, 0.42-1.17), overweight women had a higher risk (OR 1.64; 95%CI, 1.44-1.87) and obese women the highest risk (OR 2.06; 95%CI, 1.76-2.40). Logistic regression analysis showed that obesity is independently associated to MSP (OR 1.34; 95%CI, 1.16-1.55). We conclude that obesity is one identifiable risk factor for MSP in middle-aged women.


Subject(s)
Musculoskeletal Pain/epidemiology , Obesity/epidemiology , Adult , Cross-Sectional Studies , Female , Humans , Leptin/blood , Menopause/physiology , Middle Aged , Musculoskeletal Pain/blood , Musculoskeletal Pain/etiology , Obesity/blood , Obesity/complications , Prevalence , Risk Factors , Surveys and Questionnaires
16.
Am J Physiol Renal Physiol ; 310(8): F732-F737, 2016 04 15.
Article in English | MEDLINE | ID: mdl-26661652

ABSTRACT

Diuretics acting on specific nephron segments to inhibit Na+ reabsorption have been used clinically for decades; however, drug interactions, tolerance, and derangements in serum K+ complicate their use to achieve target blood pressure. ROMK is an attractive diuretic target, in part, because its inhibition is postulated to indirectly inhibit the bumetanide-sensitive Na+-K+-2Cl- cotransporter (NKCC2) and the amiloride- and benzamil-sensitive epithelial Na+ channel (ENaC). The development of small-molecule ROMK inhibitors has created opportunities for exploring the physiological responses to ROMK inhibition. The present study evaluated how inhibition of ROMK alone or in combination with NKCC2, ENaC, or the hydrochlorothiazide (HCTZ) target NCC alter fluid and electrolyte transport in the nephron. The ROMK inhibitor VU591 failed to induce diuresis when administered orally to rats. However, another ROMK inhibitor, termed compound A, induced a robust natriuretic diuresis without kaliuresis. Compound A produced additive effects on urine output and Na+ excretion when combined with HCTZ, amiloride, or benzamil, but not when coadministered with bumetanide, suggesting that the major diuretic target site is the thick ascending limb (TAL). Interestingly, compound A inhibited the kaliuretic response induced by bumetanide and HCTZ, an effect we attribute to inhibition of ROMK-mediated K+ secretion in the TAL and CD. Compound A had no effect on heterologously expressed flow-sensitive large-conductance Ca2+-activated K+ channels (Slo1/ß1). In conclusion, compound A represents an important new pharmacological tool for investigating the renal consequences of ROMK inhibition and therapeutic potential of ROMK as a diuretic target.


Subject(s)
Benzimidazoles/pharmacology , Diuresis/drug effects , Diuretics/pharmacology , Nephrons/drug effects , Potassium Channels, Inwardly Rectifying/antagonists & inhibitors , Amiloride/analogs & derivatives , Amiloride/pharmacology , Animals , Bumetanide/pharmacology , Drug Interactions , Hydrochlorothiazide/pharmacology , Potassium/urine , Rats , Sodium/urine
17.
BMC Genomics ; 16: 719, 2015 Sep 21.
Article in English | MEDLINE | ID: mdl-26391581

ABSTRACT

BACKGROUND: Pkh proteins are the PDK1 orthologs in S. cerevisiae. They have redundant and essential activity and are responsible for the phosphorylation of several members of the AGC family of protein kinases. Pkh proteins have been involved in several cellular functions, including cell wall integrity and endocytosis. However the global expression changes caused by their depletion are still unknown. RESULTS: A doxycycline-repressible tetO7 promoter driving the expression of PKH2 in cells carrying deletions of the PKH1 and PKH3 genes allowed us to progressively deplete cells from Pkh proteins when treated with doxycycline. Global gene expression analysis indicate that depletion of Pkh results in the up-regulation of genes involved in the accumulation of glycogen and also of those related to stress responses. Moreover, genes involved in the ion transport were quickly down-regulated when the levels of Pkh decreased. The reduction in the mRNA levels required for protein translation, however, was only observed after longer doxycycline treatment (24 h). We uncovered that Pkh is important for the proper transcriptional response to heat shock, and is mostly required for the effects driven by the transcription factors Hsf1 and Msn2/Msn4, but is not required for down-regulation of the mRNA coding for ribosomal proteins. CONCLUSIONS: By using the tetO7 promoter we elucidated for the first time the transcriptomic changes directly or indirectly caused by progressive depletion of Pkh. Furthermore, this system enabled the characterization of the transcriptional response triggered by heat shock in wild-type and Pkh-depleted cells, showing that about 40 % of the observed expression changes were, to some degree, dependent on Pkh.


Subject(s)
3-Phosphoinositide-Dependent Protein Kinases/genetics , Gene Expression Regulation, Fungal , Saccharomyces cerevisiae/genetics , Stress, Physiological/genetics , Transcription, Genetic , 3-Phosphoinositide-Dependent Protein Kinases/metabolism , Cluster Analysis , Fermentation , Gene Expression Profiling , Genes, Lethal , Glycogen/metabolism , Heat-Shock Response/genetics , Ions , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism
18.
Am J Physiol Renal Physiol ; 308(11): F1229-37, 2015 Jun 01.
Article in English | MEDLINE | ID: mdl-25761882

ABSTRACT

Essential hypertension (eHTN) is associated with hypercholesterolemia, but how cholesterol contributes to eHTN is unknown. Recent evidence demonstrates that short-term dietary cholesterol ingestion induces epithelial Na channel (ENaC)-dependent Na absorption with a subsequent rise in blood pressure (BP), implicating cholesterol in salt-sensitive HTN. Prostaglandin E2 (PGE2), an autocrine/paracrine molecule, is induced by flow in endothelia to vasodilate the vasculature and inhibit ENaC-dependent Na absorption in the renal collecting duct (CD), which reduce BP. We hypothesize that cholesterol suppresses flow-mediated cyclooxygenase-2 (COX-2) expression and PGE2 release in the CD, which, in turn, affects Na absorption. Cortical CDs (CCDs) were microperfused at 0, 1, and 5 nl·min(-1)·mm(-1), and PGE2 release was measured. Secreted PGE2 was similar between no- and low-flow (151 ± 28 vs. 121 ± 48 pg·ml(-1)·mm(-1)) CCDs, but PGE2 was greatest from high-flow (578 ± 146 pg·ml(-1)·mm(-1); P < 0.05) CCDs. Next, mice were fed either a 0 or 1% cholesterol diet, injected with saline to generate high urine flow rates, and CCDs were microdissected for PGE2 secretion. CCDs isolated from cholesterol-fed mice secreted less PGE2 and had a lower PGE2-generating capacity than CCDs isolated from control mice, implying cholesterol repressed flow-induced PGE2 synthesis. Next, cholesterol extraction in a CD cell line induced COX-2 expression and PGE2 release while cholesterol incorporation, conversely, suppressed their expression. Moreover, fluid shear stress (FSS) and cholesterol extraction induced COX-2 protein abundance via p38-dependent activation. Thus cellular cholesterol composition affects biomechanical signaling, which, in turn, affects FSS-mediated COX-2 expression and PGE2 release via a p38-dependent mechanism.


Subject(s)
Cholesterol/metabolism , Cyclooxygenase 2/metabolism , Dinoprostone/metabolism , Kidney Tubules, Collecting/metabolism , Animals , Calcium/metabolism , Cell Line , Ion Transport/physiology , MAP Kinase Signaling System/physiology , Mice , Sodium Chloride/metabolism
19.
Molecules ; 20(12): 21626-35, 2015 Dec 03.
Article in English | MEDLINE | ID: mdl-26633352

ABSTRACT

Black beans (Phaseolus vulgaris L.) are a rich source of flavonoids and saponins with proven health benefits. Spray dried black bean extract powders were used in different formulations for the production of nutraceutical capsules with reduced batch-to-batch weight variability. Factorial designs were used to find an adequate maltodextrin-extract ratio for the spray-drying process to produce black bean extract powders. Several flowability properties were used to determine composite flow index of produced powders. Powder containing 6% maltodextrin had the highest yield (78.6%) and the best recovery of flavonoids and saponins (>56% and >73%, respectively). The new complexes formed by the interaction of black bean powder with maltodextrin, microcrystalline cellulose 50 and starch exhibited not only bigger particles, but also a rougher structure than using only maltodextrin and starch as excipients. A drying process prior to capsule production improved powder flowability, increasing capsule weight and reducing variability. The formulation containing 25.0% of maltodextrin, 24.1% of microcrystalline cellulose 50, 50% of starch and 0.9% of magnesium stearate produced capsules with less than 2.5% weight variability. The spray drying technique is a feasible technique to produce good flow extract powders containing valuable phytochemicals and low cost excipients to reduce the end-product variability.


Subject(s)
Capsules/chemistry , Desiccation , Dietary Supplements/analysis , Excipients/chemistry , Fabaceae/chemistry , Phytochemicals/chemistry , Plant Extracts/chemistry , Chemistry, Pharmaceutical , Particle Size
20.
Biochim Biophys Acta ; 1834(7): 1302-21, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23524293

ABSTRACT

The group of AGC protein kinases includes more than 60 protein kinases in the human genome, classified into 14 families: PDK1, AKT/PKB, SGK, PKA, PKG, PKC, PKN/PRK, RSK, NDR, MAST, YANK, DMPK, GRK and SGK494. This group is also widely represented in other eukaryotes, including causative organisms of human infectious diseases. AGC kinases are involved in diverse cellular functions and are potential targets for the treatment of human diseases such as cancer, diabetes, obesity, neurological disorders, inflammation and viral infections. Small molecule inhibitors of AGC kinases may also have potential as novel therapeutic approaches against infectious organisms. Fundamental in the regulation of many AGC kinases is a regulatory site termed the "PIF-pocket" that serves as a docking site for substrates of PDK1. This site is also essential to the mechanism of activation of AGC kinases by phosphorylation and is involved in the allosteric regulation of N-terminal domains of several AGC kinases, such as PKN/PRKs and atypical PKCs. In addition, the C-terminal tail and its interaction with the PIF-pocket are involved in the dimerization of the DMPK family of kinases and may explain the molecular mechanism of allosteric activation of GRKs by GPCR substrates. In this review, we briefly introduce the AGC kinases and their known roles in physiology and disease and the discovery of the PIF-pocket as a regulatory site in AGC kinases. Finally, we summarize the current status and future therapeutic potential of small molecules directed to the PIF-pocket; these molecules can allosterically activate or inhibit the kinase as well as act as substrate-selective inhibitors. This article is part of a Special Issue entitled: Inhibitors of Protein Kinases (2012).


Subject(s)
Models, Molecular , Protein Kinases/chemistry , Protein Kinases/metabolism , Protein Structure, Tertiary , Allosteric Regulation , Candida albicans/drug effects , Candida albicans/enzymology , Candidiasis/drug therapy , Candidiasis/microbiology , Humans , Neoplasms/drug therapy , Neoplasms/enzymology , Phosphorylation/drug effects , Protein Kinase Inhibitors/pharmacology , Protein Kinases/classification
SELECTION OF CITATIONS
SEARCH DETAIL