Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
1.
Annu Rev Cell Dev Biol ; 26: 471-501, 2010.
Article in English | MEDLINE | ID: mdl-19575672

ABSTRACT

Genetic screens in Drosophila have been instrumental in distinguishing approximately 390 loci involved in position effect variegation and heterochromatin stabilization. Most of the identified genes [so-called Su(var) and E(var) genes] are also conserved in mammals, where more than 50 of their gene products are known to localize to constitutive heterochromatin. From these proteins, approximately 12 core heterochromatin components can be inferred. In addition, there are approximately 30 additional Su(var) and 10 E(var) factors that can, under distinct developmental options, interchange with constitutive heterochromatin and participate in the partitioning of the genome into repressed and active chromatin domains. A significant fraction of the Su(var) and E(var) factors are enzymes that respond to environmental and metabolic signals, thereby allowing both the variation and propagation of epigenetic states to a dynamic chromatin template. Moreover, the misregulation of human SU(VAR) and E(VAR) function can advance cancer and many other human diseases including more complex disorders. As such, mammalian Su(var) and E(var) genes and their products provide a rich source of novel targets for diagnosis of and pharmaceutical intervention in many human diseases.


Subject(s)
Chromatin/metabolism , DNA-Binding Proteins/metabolism , Methyltransferases/metabolism , Repressor Proteins/metabolism , Animals , DNA-Binding Proteins/genetics , Heterochromatin , Humans , Methyltransferases/genetics , Repressor Proteins/genetics
2.
Blood ; 137(21): 2920-2934, 2021 05 27.
Article in English | MEDLINE | ID: mdl-33512466

ABSTRACT

OBF1 is a specific coactivator of the POU family transcription factors OCT1 and OCT2. OBF1 and OCT2 are B cell-specific and indispensable for germinal center (GC) formation, but their mechanism of action is unclear. Here, we show by chromatin immunoprecipitation-sequencing that OBF1 extensively colocalizes with OCT1 and OCT2. We found that these factors also often colocalize with transcription factors of the ETS family. Furthermore, we showed that OBF1, OCT2, and OCT1 bind widely to the promoters or enhancers of genes involved in GC formation in mouse and human GC B cells. Short hairpin RNA knockdown experiments demonstrated that OCT1, OCT2, and OBF1 regulate each other and are essential for proliferation of GC-derived lymphoma cell lines. OBF1 downregulation disrupts the GC transcriptional program: genes involved in GC maintenance, such as BCL6, are downregulated, whereas genes related to exit from the GC program, such as IRF4, are upregulated. Ectopic expression of BCL6 does not restore the proliferation of GC-derived lymphoma cells depleted of OBF1 unless IRF4 is also depleted, indicating that OBF1 controls an essential regulatory node in GC differentiation.


Subject(s)
Germinal Center/metabolism , Octamer Transcription Factor-1/physiology , Octamer Transcription Factor-2/therapeutic use , Trans-Activators/therapeutic use , Transcription, Genetic/genetics , Animals , B-Lymphocytes/drug effects , B-Lymphocytes/metabolism , Cell Line, Tumor , Chromatin Immunoprecipitation , Gene Ontology , HEK293 Cells , Humans , Lipopolysaccharides/pharmacology , Lymphoma, Non-Hodgkin/genetics , Lymphoma, Non-Hodgkin/pathology , Mice , Mice, Inbred C57BL , Mice, Transgenic , Octamer Transcription Factor-1/deficiency , Octamer Transcription Factor-1/genetics , Octamer Transcription Factor-2/deficiency , Octamer Transcription Factor-2/genetics , Proto-Oncogene Protein c-ets-1/analysis , RNA Interference , RNA, Small Interfering/genetics , Recombinant Proteins/metabolism , Trans-Activators/deficiency , Trans-Activators/genetics
3.
Nat Cell Biol ; 9(3): 347-53, 2007 Mar.
Article in English | MEDLINE | ID: mdl-17277772

ABSTRACT

Posttranslational modifications of histones, such as methylation, regulate chromatin structure and gene expression. Recently, lysine-specific demethylase 1 (LSD1), the first histone demethylase, was identified. LSD1 interacts with the androgen receptor and promotes androgen-dependent transcription of target genes by ligand-induced demethylation of mono- and dimethylated histone H3 at Lys 9 (H3K9) only. Here, we identify the Jumonji C (JMJC) domain-containing protein JMJD2C as the first histone tridemethylase regulating androgen receptor function. JMJD2C interacts with androgen receptor in vitro and in vivo. Assembly of ligand-bound androgen receptor and JMJD2C on androgen receptor-target genes results in demethylation of trimethyl H3K9 and in stimulation of androgen receptor-dependent transcription. Conversely, knockdown of JMJD2C inhibits androgen-induced removal of trimethyl H3K9, transcriptional activation and tumour cell proliferation. Importantly, JMJD2C colocalizes with androgen receptor and LSD1 in normal prostate and in prostate carcinomas. JMJD2C and LSD1 interact and both demethylases cooperatively stimulate androgen receptor-dependent gene transcription. In addition, androgen receptor, JMJD2C and LSD1 assemble on chromatin to remove methyl groups from mono, di and trimethylated H3K9. Thus, our data suggest that specific gene regulation requires the assembly and coordinate action of demethylases with distinct substrate specificities.


Subject(s)
Neoplasm Proteins/metabolism , Oxidoreductases, N-Demethylating/metabolism , Receptors, Androgen/metabolism , Transcription Factors/metabolism , Animals , Cell Line , Cell Line, Tumor , Cell Proliferation/drug effects , Chlorocebus aethiops , Gene Expression Regulation/drug effects , HeLa Cells , Histone Demethylases , Histones/metabolism , Humans , Jumonji Domain-Containing Histone Demethylases , Male , Metribolone/pharmacology , MicroRNAs/genetics , Neoplasm Proteins/genetics , Oxidoreductases, N-Demethylating/genetics , Prostate-Specific Antigen/genetics , Prostate-Specific Antigen/metabolism , Prostatic Neoplasms/genetics , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/pathology , Protein Binding/drug effects , RNA, Small Interfering/genetics , Receptors, Androgen/analysis , Receptors, Glucocorticoid/genetics , Receptors, Glucocorticoid/metabolism , Receptors, Progesterone/genetics , Receptors, Progesterone/metabolism , Response Elements/genetics , Tissue Kallikreins/genetics , Transcription Factors/genetics , Transfection
4.
bioRxiv ; 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38712281

ABSTRACT

Non-alcoholic fatty liver disease (NAFLD) - characterized by excess accumulation of fat in the liver - now affects one third of the world's population. As NAFLD progresses, extracellular matrix components including collagen accumulate in the liver causing tissue fibrosis, a major determinant of disease severity and mortality. To identify transcriptional regulators of fibrosis, we computationally inferred the activity of transcription factors (TFs) relevant to fibrosis by profiling the matched transcriptomes and epigenomes of 108 human liver biopsies from a deeply-characterized cohort of patients spanning the full histopathologic spectrum of NAFLD. CRISPR-based genetic knockout of the top 100 TFs identified ZNF469 as a regulator of collagen expression in primary human hepatic stellate cells (HSCs). Gain- and loss-of-function studies established that ZNF469 regulates collagen genes and genes involved in matrix homeostasis through direct binding to gene bodies and regulatory elements. By integrating multiomic large-scale profiling of human biopsies with extensive experimental validation we demonstrate that ZNF469 is a transcriptional regulator of collagen in HSCs. Overall, these data nominate ZNF469 as a previously unrecognized determinant of NAFLD-associated liver fibrosis.

5.
Science ; 385(6704): 91-99, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38963839

ABSTRACT

Sickle cell disease (SCD) is a prevalent, life-threatening condition attributable to a heritable mutation in ß-hemoglobin. Therapeutic induction of fetal hemoglobin (HbF) can ameliorate disease complications and has been intently pursued. However, safe and effective small-molecule inducers of HbF remain elusive. We report the discovery of dWIZ-1 and dWIZ-2, molecular glue degraders of the WIZ transcription factor that robustly induce HbF in erythroblasts. Phenotypic screening of a cereblon (CRBN)-biased chemical library revealed WIZ as a previously unknown repressor of HbF. WIZ degradation is mediated by recruitment of WIZ(ZF7) to CRBN by dWIZ-1, as resolved by crystallography of the ternary complex. Pharmacological degradation of WIZ was well tolerated and induced HbF in humanized mice and cynomolgus monkeys. These findings establish WIZ degradation as a globally accessible therapeutic strategy for SCD.


Subject(s)
Anemia, Sickle Cell , Antisickling Agents , Fetal Hemoglobin , Kruppel-Like Transcription Factors , Nerve Tissue Proteins , Animals , Humans , Mice , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/genetics , Anemia, Sickle Cell/drug therapy , Anemia, Sickle Cell/metabolism , Antisickling Agents/chemistry , Antisickling Agents/pharmacology , Antisickling Agents/therapeutic use , Crystallography, X-Ray , Drug Discovery , Fetal Hemoglobin/genetics , Fetal Hemoglobin/metabolism , Kruppel-Like Transcription Factors/metabolism , Macaca fascicularis , Nerve Tissue Proteins/metabolism , Proteolysis/drug effects , Small Molecule Libraries/chemistry , Small Molecule Libraries/pharmacology , Small Molecule Libraries/therapeutic use , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/genetics
6.
Biophys J ; 97(11): 2876-85, 2009 Dec 02.
Article in English | MEDLINE | ID: mdl-19948116

ABSTRACT

Heterochromatin protein 1 (HP1) is a central factor in establishing and maintaining the repressive heterochromatin state. To elucidate its mobility and interactions, we conducted a comprehensive analysis on different time and length scales by fluorescence fluctuation microscopy in mouse cell lines. The local mobility of HP1alpha and HP1beta was investigated in densely packed pericentric heterochromatin foci and compared with other bona fide euchromatin regions of the nucleus by fluorescence bleaching and correlation methods. A quantitative description of HP1alpha/beta in terms of its concentration, diffusion coefficient, kinetic binding, and dissociation rate constants was derived. Three distinct classes of chromatin-binding sites with average residence times t(res)

Subject(s)
Chromosomal Proteins, Non-Histone/metabolism , Animals , Cell Line , Cell Survival , Chromobox Protein Homolog 5 , Diffusion , Epigenesis, Genetic , Fluorescence Recovery After Photobleaching , Heterochromatin/metabolism , Histone-Lysine N-Methyltransferase/metabolism , Kinetics , Mice , Microscopy, Fluorescence , Movement , Protein Transport , Spectrometry, Fluorescence
7.
PLoS One ; 12(8): e0183679, 2017.
Article in English | MEDLINE | ID: mdl-28837623

ABSTRACT

Macrophages are key cell types of the innate immune system regulating host defense, inflammation, tissue homeostasis and cancer. Within this functional spectrum diverse and often opposing phenotypes are displayed which are dictated by environmental clues and depend on highly plastic transcriptional programs. Among these the 'classical' (M1) and 'alternative' (M2) macrophage polarization phenotypes are the best characterized. Understanding macrophage polarization in humans may reveal novel therapeutic intervention possibilities for chronic inflammation, wound healing and cancer. Systematic loss of function screening in human primary macrophages is limited due to lack of robust gene delivery methods and limited sample availability. To overcome these hurdles we developed cell-autonomous assays using the THP-1 cell line allowing genetic screens for human macrophage phenotypes. We screened 648 chromatin and signaling regulators with a pooled shRNA library for M1 and M2 polarization modulators. Validation experiments confirmed the primary screening results and identified OGT (O-linked N-acetylglucosamine (GlcNAc) transferase) as a novel mediator of M2 polarization in human macrophages. Our approach offers a possible avenue to utilize comprehensive genetic tools to identify novel candidate genes regulating macrophage polarization in humans.


Subject(s)
Cell Polarity/genetics , Macrophages/cytology , RNA, Small Interfering/genetics , Cell Line, Tumor , Humans , Models, Biological , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction
8.
Stem Cell Reports ; 7(6): 1059-1071, 2016 12 13.
Article in English | MEDLINE | ID: mdl-27840045

ABSTRACT

In fragile X syndrome (FXS), CGG repeat expansion greater than 200 triplets is believed to trigger FMR1 gene silencing and disease etiology. However, FXS siblings have been identified with more than 200 CGGs, termed unmethylated full mutation (UFM) carriers, without gene silencing and disease symptoms. Here, we show that hypomethylation of the FMR1 promoter is maintained in induced pluripotent stem cells (iPSCs) derived from two UFM individuals. However, a subset of iPSC clones with large CGG expansions carries silenced FMR1. Furthermore, we demonstrate de novo silencing upon expansion of the CGG repeat size. FMR1 does not undergo silencing during neuronal differentiation of UFM iPSCs, and expression of large unmethylated CGG repeats has phenotypic consequences resulting in neurodegenerative features. Our data suggest that UFM individuals do not lack the cell-intrinsic ability to silence FMR1 and that inter-individual variability in the CGG repeat size required for silencing exists in the FXS population.


Subject(s)
DNA Methylation/genetics , Fragile X Mental Retardation Protein/genetics , Gene Silencing , Induced Pluripotent Stem Cells/metabolism , Mutation/genetics , Neurons/metabolism , Trinucleotide Repeat Expansion/genetics , Cell Differentiation/genetics , Clone Cells , Epigenesis, Genetic , Female , Fragile X Syndrome/genetics , Genetic Loci , Humans , Induced Pluripotent Stem Cells/cytology , Male , Pedigree
9.
J Biomol Screen ; 20(9): 1101-11, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26024946

ABSTRACT

Fragile X syndrome (FXS) is the most common form of inherited mental retardation, and it is caused in most of cases by epigenetic silencing of the Fmr1 gene. Today, no specific therapy exists for FXS, and current treatments are only directed to improve behavioral symptoms. Neuronal progenitors derived from FXS patient induced pluripotent stem cells (iPSCs) represent a unique model to study the disease and develop assays for large-scale drug discovery screens since they conserve the Fmr1 gene silenced within the disease context. We have established a high-content imaging assay to run a large-scale phenotypic screen aimed to identify compounds that reactivate the silenced Fmr1 gene. A set of 50,000 compounds was tested, including modulators of several epigenetic targets. We describe an integrated drug discovery model comprising iPSC generation, culture scale-up, and quality control and screening with a very sensitive high-content imaging assay assisted by single-cell image analysis and multiparametric data analysis based on machine learning algorithms. The screening identified several compounds that induced a weak expression of fragile X mental retardation protein (FMRP) and thus sets the basis for further large-scale screens to find candidate drugs or targets tackling the underlying mechanism of FXS with potential for therapeutic intervention.


Subject(s)
Fragile X Syndrome/drug therapy , Gene Silencing/drug effects , Induced Pluripotent Stem Cells/drug effects , Neural Stem Cells/drug effects , Cells, Cultured , Drug Evaluation, Preclinical , Fragile X Mental Retardation Protein/genetics , Fragile X Mental Retardation Protein/metabolism , Fragile X Syndrome/genetics , High-Throughput Screening Assays , Humans , Induced Pluripotent Stem Cells/physiology , Neural Stem Cells/physiology , Trinucleotide Repeats
10.
Genes Dev ; 20(12): 1557-62, 2006 Jun 15.
Article in English | MEDLINE | ID: mdl-16738407

ABSTRACT

Histone lysine trimethyl states represent some of the most robust epigenetic modifications in eukaryotic chromatin. Using a candidate approach, we identified the subgroup of murine Jmjd2 proteins to antagonize H3K9me3 at pericentric heterochromatin. H3K27me3 and H4K20me3 marks are not impaired in inducible Jmjd2b-GFP cell lines, but Jmjd2b also reduces H3K36 methylation. Since recombinant Jmjd2b appears as a very poor enzyme, we applied metabolic labeling with heavy methyl groups to demonstrate Jmjd2b-mediated removal of chromosomal H3K9me3 as an active process that occurs well before replication of chromatin. These data reveal that certain members of the jmjC class of hydroxylases can work in a pathway that actively antagonizes a histone lysine trimethyl state.


Subject(s)
Heterochromatin/metabolism , Histones/metabolism , Mixed Function Oxygenases/metabolism , Neoplasm Proteins/metabolism , Animals , Cells, Cultured , Chromosomes, Mammalian/genetics , Heterochromatin/genetics , Histones/chemistry , Jumonji Domain-Containing Histone Demethylases , Lysine/metabolism , Methylation , Methyltransferases/metabolism , Mice , Mixed Function Oxygenases/chemistry , Neoplasm Proteins/chemistry , Repressor Proteins/metabolism
11.
Appl Environ Microbiol ; 70(2): 722-8, 2004 Feb.
Article in English | MEDLINE | ID: mdl-14766547

ABSTRACT

Structural genes coding for two membrane-associated NiFe hydrogenases in the phototrophic purple sulfur bacterium Thiocapsa roseopersicina (hupSL and hynSL) have recently been isolated and characterized. Deletion of both hydrogenase structural genes did not eliminate hydrogenase activity in the cells, and considerable hydrogenase activity was detected in the soluble fraction. The enzyme responsible for this activity was partially purified, and the gene cluster coding for a cytoplasmic, NAD+-reducing NiFe hydrogenase was identified and sequenced. The deduced gene products exhibited the highest similarity to the corresponding subunits of the cyanobacterial bidirectional soluble hydrogenases (HoxEFUYH). The five genes were localized on a single transcript according to reverse transcription-PCR experiments. A sigma54-type promoter preceded the gene cluster, suggesting that there was inducible expression of the operon. The Hox hydrogenase was proven to function as a truly bidirectional hydrogenase; it produced H2 under nitrogenase-repressed conditions, and it recycled the hydrogen produced by the nitrogenase in cells fixing N2. In-frame deletion of the hoxE gene eliminated hydrogen evolution derived from the Hox enzyme in vivo, although it had no effect on the hydrogenase activity in vitro. This suggests that HoxE has a hydrogenase-related role; it likely participates in the electron transfer processes. This is the first example of the presence of a cyanobacterial-type, NAD+-reducing hydrogenase in a phototrophic bacterium that is not a cyanobacterium. The potential physiological implications are discussed.


Subject(s)
Hydrogenase , NAD/metabolism , Thiocapsa roseopersicina/enzymology , Base Sequence , Gene Deletion , Genes, Bacterial , Hydrogen/metabolism , Hydrogenase/chemistry , Hydrogenase/genetics , Hydrogenase/isolation & purification , Hydrogenase/metabolism , Molecular Sequence Data , Multigene Family , Oxidation-Reduction , Photosynthesis , Solubility , Thiocapsa roseopersicina/genetics , Thiocapsa roseopersicina/growth & development
12.
Eur J Biochem ; 270(10): 2218-27, 2003 May.
Article in English | MEDLINE | ID: mdl-12752441

ABSTRACT

There are at least two membrane-bound (HynSL and HupSL) and one soluble (HoxEFUYH) [NiFe] hydrogenases in Thiocapsa roseopersicina BBS, a purple sulfur photosynthetic bacterium. Genes coding for accessory proteins that participate in the biosynthesis and maturation of hydrogenases seem to be scattered along the chromosome. Transposon-based mutagenesis was used to locate the hydrogenase accessory genes. Molecular analysis of strains showing mutant phenotypes led to the identification of hupK (hoxV ), hypC1, hypC2, hypD, hypE, and hynD genes. The roles of hynD, hupK and the two hypC genes were investigated in detail. The putative HynD was found to be a hydrogenase-specific endoprotease type protein, participating in the maturation of the HynSL enzyme. HupK plays an important role in the formation of the functionally active membrane-bound [NiFe] hydrogenases, but not in the biosynthesis of the soluble enzyme. In-frame deletion mutagenesis showed that HypC proteins were not specific for the maturation of either hydrogenase enzyme. The lack of either HypC protein drastically reduced the activity of every hydrogenase. Hence both HypCs might participate in the maturation of [NiFe] hydrogenases. Homologous complementation with the appropriate genes substantiated the physiological roles of the corresponding gene products in the H2 metabolism of T. roseopersicina.


Subject(s)
Hydrogenase/chemistry , Hydrogenase/metabolism , Proteins , Thiocapsa/enzymology , Bacterial Proteins/genetics , Blotting, Southern , Cell Membrane/metabolism , DNA/metabolism , DNA Transposable Elements , Endopeptidases/chemistry , Gene Deletion , Genetic Complementation Test , Hydrogen/chemistry , Models, Genetic , Mutagenesis, Site-Directed , Plasmids/metabolism , Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction , Sequence Analysis, DNA , Transcription, Genetic
13.
Appl Environ Microbiol ; 70(2): 712-21, 2004 Feb.
Article in English | MEDLINE | ID: mdl-14766546

ABSTRACT

A set of modular broad-host-range expression vectors with various affinity tags (six-His-tag, FLAG-tag, Strep-tag II, T7-tag) was created. The complete nucleotide sequences of the vectors are known, and these small vectors can be mobilized by conjugation. They are useful in the purification of proteins and protein complexes from gram-negative bacterial species. The plasmids were easily customized for Thiocapsa roseopersicina, Rhodobacter capsulatus, and Methylococcus capsulatus by inserting an appropriate promoter. These examples demonstrate the versatility and flexibility of the vectors. The constructs harbor the T7 promoter for easy overproduction of the desired protein in an appropriate Escherichia coli host. The vectors were useful in purifying different proteins from T. roseopersicina. The FLAG-tag-Strep-tag II combination was utilized for isolation of the HynL-HypC2 protein complex involved in hydrogenase maturation. These tools should be useful for protein purification and for studying protein-protein interactions in a range of bacterial species.


Subject(s)
Bacterial Proteins/isolation & purification , Escherichia coli/metabolism , Genetic Vectors , Methylococcus capsulatus/metabolism , Rhodobacter capsulatus/metabolism , Thiocapsa roseopersicina/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Cloning, Molecular , Conjugation, Genetic , Escherichia coli/genetics , Gene Expression Regulation, Bacterial , Histidine/genetics , Histidine/metabolism , Hydrogenase/genetics , Methylococcus capsulatus/genetics , Plasmids , Promoter Regions, Genetic , Proteins/genetics , Proteins/metabolism , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/isolation & purification , Recombinant Fusion Proteins/metabolism , Rhodobacter capsulatus/genetics , Streptavidin/genetics , Streptavidin/metabolism , Thiocapsa roseopersicina/genetics
SELECTION OF CITATIONS
SEARCH DETAIL