Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
J Neurochem ; 168(9): 2461-2478, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38491746

ABSTRACT

Dysregulation of synaptic glutamate levels can lead to excitotoxicity such as that observed in stroke, traumatic brain injury, and epilepsy. The role of increased intracellular calcium (Ca2+) in the development of excitotoxicity is well established. However, less is known regarding the impact of glutamate on endoplasmic reticulum (ER)-Ca2+-mediated processes such as proteostasis. To investigate this, we expressed a secreted ER Ca2+ modulated protein (SERCaMP) in primary cortical neurons to monitor exodosis, a phenomenon whereby ER calcium depletion causes the secretion of ER-resident proteins that perform essential functions to the ER and the cell. Activation of glutamatergic receptors (GluRs) led to an increase in SERCaMP secretion indicating that normally ER-resident proteins are being secreted in a manner consistent with ER Ca2+ depletion. Antagonism of ER Ca2+ channels attenuated the effects of glutamate and GluR agonists on SERCaMP release. We also demonstrate that endogenous proteins containing an ER retention/retrieval sequence (ERS) are secreted in response to GluR activation supporting that neuronal activation by glutamate promotes ER exodosis. Ectopic expression of KDEL receptors attenuated the secretion of ERS-containing proteins caused by GluR agonists. Taken together, our data indicate that excessive GluR activation causes disruption of neuronal proteostasis by triggering the secretion of ER-resident proteins through ER Ca2+ depletion and describes a new facet of excitotoxicity.


Subject(s)
Endoplasmic Reticulum , Glutamic Acid , Neurons , Animals , Glutamic Acid/metabolism , Endoplasmic Reticulum/metabolism , Endoplasmic Reticulum/drug effects , Neurons/metabolism , Neurons/drug effects , Cells, Cultured , Calcium/metabolism , Mice , Receptors, Glutamate/metabolism , Rats , Cerebral Cortex/metabolism , Cerebral Cortex/drug effects
2.
J Neurochem ; 159(5): 867-886, 2021 12.
Article in English | MEDLINE | ID: mdl-34569615

ABSTRACT

Glucagon-like peptide-1 (GLP-1) is best known for its insulinotropic action following food intake. Its metabolite, GLP-1 (9-36), was assumed biologically inactive because of low GLP-1 receptor (GLP-1R) affinity and non-insulinotropic properties; however, recent studies contradict this assumption. Increased use of FDA approved GLP-1 analogues for treating metabolic disorders and neurodegenerative diseases raises interest in GLP-1 (9-36)'s biological role. We use human SH-SY5Y neuroblastoma cells and a GLP-1R over-expressing variety (#9), in both undifferentiated and differentiated states, to evaluate the neurotrophic/neuroprotective effects of GLP-1 (9-36) against toxic glutamate exposure and other oxidative stress models (via the MTS, LDH or ROS assays). In addition, we examine GLP-1 (9-36)'s signaling pathways, including cyclic-adenosine monophosphate (cAMP), protein kinase-A (PKA), and 5' adenosine monophosphate-activated protein kinase (AMPK) via the use of ELISA, pharmacological inhibitors, or GLP-1R antagonist. Human HMC3 and mouse IMG microglial cell lines were used to study the anti-inflammatory effects of GLP-1 (9-36) against lipopolysaccharide (LPS) (via ELISA). Finally, we applied GLP-1 (9-36) to primary dissociation cultures challenged with α-synuclein or amyloid-ß and assessed survival and morphology via immunochemistry. We demonstrate evidence of GLP-1R, cAMP, PKA, and AMPK-mediated neurotrophic and neuroprotective effects of GLP-1 (9-36). The metabolite significantly reduced IL-6 and TNF-α levels in HMC3 and IMG microglial cells, respectively. Lastly, we show mild but significant effects of GLP-1 (9-36) in primary neuron cultures challenged with α-synuclein or amyloid-ß. These studies enhance understanding of GLP-1 (9-36)'s effects on the nervous system and its potential as a primary or complementary treatment in pathological contexts.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Glucagon-Like Peptide 1/analogs & derivatives , Microglia/drug effects , Microglia/metabolism , Neurodegenerative Diseases/metabolism , Neuroprotective Agents/pharmacology , Animals , Anti-Inflammatory Agents/therapeutic use , Cell Line, Transformed , Cell Line, Tumor , Cells, Cultured , Coculture Techniques , Dose-Response Relationship, Drug , Female , Glucagon-Like Peptide 1/pharmacology , Glucagon-Like Peptide 1/therapeutic use , Humans , Mice , Microglia/pathology , Neurodegenerative Diseases/drug therapy , Neurodegenerative Diseases/pathology , Neuroprotective Agents/therapeutic use , Pregnancy , Rats , Rats, Sprague-Dawley
3.
Mol Ther ; 27(1): 151-163, 2019 01 02.
Article in English | MEDLINE | ID: mdl-30389355

ABSTRACT

Investigators have utilized the CRISPR/Cas9 gene-editing system to specifically target well-conserved regions of HIV, leading to decreased infectivity and pathogenesis in vitro and ex vivo. We utilized a specialized extracellular vesicle termed a "gesicle" to efficiently, yet transiently, deliver Cas9 in a ribonucleoprotein form targeting the HIV long terminal repeat (LTR). Gesicles are produced through expression of vesicular stomatitis virus glycoprotein and package protein as their cargo, thus bypassing the need for transgene delivery, and allowing finer control of Cas9 expression. Using both NanoSight particle and western blot analysis, we verified production of Cas9-containing gesicles by HEK293FT cells. Application of gesicles to CHME-5 microglia resulted in rapid but transient transfer of Cas9 by western blot, which is present at 1 hr, but is undetectable by 24 hr post-treatment. Gesicle delivery of Cas9 protein preloaded with guide RNA targeting the HIV LTR to HIV-NanoLuc CHME-5 cells generated mutations within the LTR region and copy number loss. Finally, we demonstrated that this treatment resulted in reduced proviral activity under basal conditions and after stimulation with pro-inflammatory factors lipopolysaccharide (LPS) or tumor necrosis factor alpha (TNF-α). These data suggest that gesicles are a viable alternative approach to deliver CRISPR/Cas9 technology.


Subject(s)
CRISPR-Associated Protein 9/metabolism , CRISPR-Cas Systems/physiology , Gene Editing/methods , Heterogeneous-Nuclear Ribonucleoproteins/metabolism , CRISPR-Associated Protein 9/genetics , CRISPR-Cas Systems/drug effects , CRISPR-Cas Systems/genetics , HEK293 Cells , HIV Long Terminal Repeat/genetics , HIV Long Terminal Repeat/physiology , Heterogeneous-Nuclear Ribonucleoproteins/genetics , Humans , Lipopolysaccharides/pharmacology , Mutation/genetics , Proviruses/genetics , Proviruses/metabolism , Tumor Necrosis Factor-alpha/metabolism , Vesiculovirus/genetics , Vesiculovirus/metabolism
4.
Cell Mol Neurobiol ; 37(8): 1487-1499, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28260198

ABSTRACT

Microparticles have potential as neuron-specific delivery platforms and devices with many applications in neuroscience, pharmacology, and biomedicine. To date, most literature suggests that neurons are not phagocytic cells capable of internalizing microparticles larger than 0.5 µm. We report that neurons transport fluorescently labeled silica microspheres with diameters of 1-2 µm into neurons in vitro and in rat brain without having overt effects on cell viability. Using flow cytometry, fluorescence-activated cell sorting, and confocal and electron microscopy, we first found that SH-SY5Y human neuroblastoma cells internalized 1-µm silicon microspheres with surface charges of -70 mV (hydroxyl and carboxyl), -30 mV (amino), and +40 mV (ammonio). Uptake was rapid, within 2-4 h, and did not affect cell viability 48 h later. Flow cytometry assays indicate that SH-SY5Y cells internalize 1- and 1.5-µm microspheres at the same rate over a 24-h incubation period. Electron microscopy confirms that SH-SY5Y cells internalize 1-, 1.5-, and 2-µm microspheres. Confocal microscopy demonstrated that primary cortical neurons also internalized 1-, 1.5-, and 2-µm amino microspheres within 4 h. Finally, we injected 1-µm amino microspheres into rat striatum and found microspheres inside neurons. Overall, neurons can internalize microspheres up to 2 µm in diameter with a range of surface chemical groups and charges. These findings allow a host of neuroscience and neuroengineering applications including intracellular microdevices within neurons.


Subject(s)
Endocytosis/physiology , Microspheres , Neurons/metabolism , Silicon Dioxide/metabolism , Animals , Cell Line, Tumor , Cells, Cultured , Cerebral Cortex/drug effects , Cerebral Cortex/metabolism , Cerebral Cortex/ultrastructure , Endocytosis/drug effects , Humans , Neurons/drug effects , Neurons/ultrastructure , Rats , Rats, Long-Evans , Silicon Dioxide/pharmacology
5.
Cartilage ; 11(1): 108-116, 2020 01.
Article in English | MEDLINE | ID: mdl-29938530

ABSTRACT

OBJECTIVE: Osteoarthritis is a painful, chronic joint disease affecting man and animals with no known curative therapies. Palliative nonsteroidal anti-inflammatory drugs (NSAIDs) are commonly used but they cause adverse side effects prompting the search for safer alternatives. To address this need, we evaluated the anti-inflammatory activity of avocado/soybean unsaponifiables (ASU), glucosamine (GLU), and chondroitin sulfate (CS) with or without the NSAID carprofen. DESIGN: Canine chondrocytes were propagated in microcarrier spinner culture and incubated with (1) control medium, (2) ASU (8.3 µg/mL) + GLU (11 µg/mL) + CS (20 µg/mL) combination for 24 hours; and/or carprofen (40 ng/mL). Cultures were next incubated with control medium alone or IL-1ß (10 ng/mL) for another 24 hours. Production of PGE2, IL-6, IL-8, and MCP-1 (also known as CCL-2) were measured by ELISA. RESULTS: Chondrocytes proliferated in microcarrier spinner culture and produced type II collagen and aggrecan. Stimulation with IL-1ß induced significant increases in PGE2, IL-6, IL-8, and MCP-1 production. The increases in production were suppressed by carprofen as well as [ASU+GLU+CS]. The combination of carprofen and [ASU+GLU+CS] reduced PGE2 production significantly more than either preparation alone. The inhibitory effect of carprofen on IL-6, IL-8, and MCP-1 production was significantly less than that of [ASU+GLU+CS], whereas the combination did not reduce the production of these molecules significantly more than [ASU+GLU+CS] alone. CONCLUSIONS: The potentiating effect of [ASU+GLU+CS] on low-dose carprofen was identified in chondrocyte microcarrier spinner cultures. Our results suggest that the combination of low-dose NSAIDs like carprofen with [ASU+GLU+CS] could offer a safe, effective management for joint pain.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Carbazoles/pharmacology , Chondroitin Sulfates/pharmacology , Glucosamine/pharmacology , Glycine max , Persea , Aggrecans/biosynthesis , Animals , Arthralgia/drug therapy , Cells, Cultured , Chemokine CCL2/metabolism , Chondrocytes/drug effects , Collagen Type II/biosynthesis , Dinoprostone/biosynthesis , Dogs , Drug Therapy, Combination , Humans , Interleukin-1beta/administration & dosage , Interleukin-6/metabolism , Interleukin-8/metabolism
6.
Neuron ; 102(1): 105-119.e8, 2019 04 03.
Article in English | MEDLINE | ID: mdl-30792150

ABSTRACT

Historically, the rat has been the preferred animal model for behavioral studies. Limitations in genome modification have, however, caused a lag in their use compared to the bevy of available transgenic mice. Here, we have developed several transgenic tools, including viral vectors and transgenic rats, for targeted genome modification in specific adult rat neurons using CRISPR-Cas9 technology. Starting from wild-type rats, knockout of tyrosine hydroxylase was achieved with adeno-associated viral (AAV) vectors expressing Cas9 or guide RNAs (gRNAs). We subsequently created an AAV vector for Cre-dependent gRNA expression as well as three new transgenic rat lines to specifically target CRISPR-Cas9 components to dopaminergic neurons. One rat represents the first knockin rat model made by germline gene targeting in spermatogonial stem cells. The rats described herein serve as a versatile platform for making cell-specific and sequence-specific genome modifications in the adult brain and potentially other Cre-expressing tissues of the rat.


Subject(s)
Adult Germline Stem Cells/metabolism , Brain/metabolism , CRISPR-Cas Systems , Dopaminergic Neurons/metabolism , Gene Editing/methods , Gene Targeting/methods , Animals , CRISPR-Associated Protein 9/genetics , Deoxyribonuclease I/genetics , Dependovirus , Disease Models, Animal , Dopamine Plasma Membrane Transport Proteins/genetics , Gene Knock-In Techniques/methods , Gene Knockout Techniques , Genetic Vectors , Integrases , Luminescent Proteins/genetics , Neurons/metabolism , Promoter Regions, Genetic , RNA, Guide, Kinetoplastida , Rats , Rats, Transgenic , Tyrosine 3-Monooxygenase/genetics , Red Fluorescent Protein
7.
Cartilage ; 9(3): 304-312, 2018 07.
Article in English | MEDLINE | ID: mdl-29156944

ABSTRACT

Objective Pro-inflammatory mediators such as prostaglandin E-2 (PGE2) play major roles in the pathogenesis of osteoarthritis (OA). Although current pharmacologic treatments reduce inflammation, their prolonged use is associated with deleterious side effects prompting the search for safer and effective alternative strategies. The present study evaluated whether chondrocyte production of PGE2 can be suppressed by the combination of avocado/soybean unsaponifiables (ASU) and α-lipoic acid (LA). Design Chondrocytes from articular cartilage of equine joints were incubated for 24 hours with: (1) control media, (2) ASU, (3) LA, or (4) ASU + LA combination. Cells were activated with lipopolysaccharide (LPS), interleukin 1ß (IL-1ß) or hydrogen peroxide (H2O2) for 24 hours and supernatants were immunoassayed for PGE2. Nuclear factor-kappa B (NF-κB) analyses were performed by immunocytochemistry and Western blot following 1 hour of activation with IL-1ß. Results LPS, IL-1ß, or H2O2 significantly increased PGE2 production. ASU or LA alone suppressed PGE2 production in LPS and IL-1ß activated cells. Only LA alone at 2.5 µg/mL was inhibitory in H2O2-activated chondrocytes. ASU + LA inhibited more than either agent alone in all activated cells. ASU + LA also inhibited the IL-1ß induced nuclear translocation of NF-κB. Conclusions The present study provides evidence that chondrocyte PGE2 production can be inhibited by the combination of ASU + LA more effectively than either ASU or LA alone. Inhibition of PGE2 production is associated with the suppression of NF-κB translocation. The potent inhibitory effect of ASU + LA on PGE2 production could offer a potential advantage for a combination anti-inflammatory/antioxidant approach in the management of OA.


Subject(s)
Cells, Cultured/drug effects , Chondrocytes/cytology , Osteoarthritis/metabolism , Persea/adverse effects , Soybean Oil/pharmacology , Thioctic Acid/pharmacology , Animals , Anti-Inflammatory Agents/adverse effects , Anti-Inflammatory Agents/metabolism , Anti-Inflammatory Agents/pharmacology , Cartilage, Articular/cytology , Cartilage, Articular/drug effects , Cartilage, Articular/metabolism , Chondrocytes/drug effects , Chondrocytes/metabolism , Combined Modality Therapy/methods , Dinoprostone/biosynthesis , Dinoprostone/metabolism , Disease Models, Animal , Horses , Hydrogen Peroxide/metabolism , Hydrogen Peroxide/pharmacology , Inflammation/drug therapy , Interleukin-1beta/metabolism , Interleukin-1beta/pharmacology , Lipopolysaccharides/metabolism , Lipopolysaccharides/pharmacology , NF-kappa B/metabolism , NF-kappa B/pharmacology , Osteoarthritis/drug therapy , Osteoarthritis/physiopathology , Persea/metabolism , Plant Extracts/pharmacology , Soybean Oil/adverse effects , Soybean Oil/metabolism , Thioctic Acid/adverse effects , Thioctic Acid/metabolism
8.
J Inflamm (Lond) ; 11(1): 8, 2014 Mar 28.
Article in English | MEDLINE | ID: mdl-24678847

ABSTRACT

BACKGROUND: Osteoarthritis (OA) is characterized by inflammation, joint immobility, and pain. Non-pharmacologic agents modulating pro-inflammatory mediator expression offer considerable promise as safe and effective treatments for OA. We previously determined the anti-inflammatory effect of an avocado/soybean unsaponifiables (ASU) and epigallocatechin gallate (EGCG) combination on prostaglandin E2 (PGE2) production and nuclear factor-kappa B (NF-κB) translocation. The aim of this study was to evaluate the effects of ASU + EGCG on pro-inflammatory gene expression. FINDINGS: Articular chondrocytes from carpal joints of mature horses were pre-incubated for 24 hours with control media alone or ASU (8.3 µg/mL) + EGCG (40 ng/mL), followed by one hour activation with interleukin-1 beta (IL-1ß, 10 ng/mL) and tumor necrosis factor-alpha (TNF-α, 1 ng/mL). Total cellular RNA was isolated and real-time PCR performed to measure IL-1ß, TNF-α, interleukin-6 (IL-6), cyclooxygenase-2 (COX-2), and interleukin-8 (IL-8) gene expression. Intracellular localization of NF-κB was analyzed by immunohistochemistry and Western blot. Pre-treatment with ASU + EGCG significantly (P < 0.001) decreased gene expression of IL-1ß, TNF-α, IL-6, COX-2, and IL-8 in cytokine-activated chondrocytes. Western blot and immunostaining confirmed NF-κB translocation inhibition. CONCLUSIONS: We demonstrate that ASU + EGCG inhibits cytokine-induced gene expression of IL-1ß, TNF-α, IL-6, COX-2, and IL-8 through modulation of NF-κB. Our results indicate that the activity of ASU + EGCG affects a wide array of inflammatory molecules in addition to decreasing PGE2 synthesis in activated chondrocytes. The responsiveness of chondrocytes to this combination supports its potential utility for the inhibition of joint inflammation.

SELECTION OF CITATIONS
SEARCH DETAIL