Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 241
Filter
1.
Cell ; 185(19): 3487-3500.e14, 2022 09 15.
Article in English | MEDLINE | ID: mdl-36057255

ABSTRACT

The supercoiling of bacterial and archaeal flagellar filaments is required for motility. Archaeal flagellar filaments have no homology to their bacterial counterparts and are instead homologs of bacterial type IV pili. How these prokaryotic flagellar filaments, each composed of thousands of copies of identical subunits, can form stable supercoils under torsional stress is a fascinating puzzle for which structural insights have been elusive. Advances in cryoelectron microscopy (cryo-EM) make it now possible to directly visualize the basis for supercoiling, and here, we show the atomic structures of supercoiled bacterial and archaeal flagellar filaments. For the bacterial flagellar filament, we identify 11 distinct protofilament conformations with three broad classes of inter-protomer interface. For the archaeal flagellar filament, 10 protofilaments form a supercoil geometry supported by 10 distinct conformations, with one inter-protomer discontinuity creating a seam inside of the curve. Our results suggest that convergent evolution has yielded stable superhelical geometries that enable microbial locomotion.


Subject(s)
Flagella , Flagellin , Archaea , Bacteria , Cryoelectron Microscopy , Fimbriae, Bacterial/chemistry , Protein Subunits/analysis
2.
Cell ; 156(5): 1045-59, 2014 Feb 27.
Article in English | MEDLINE | ID: mdl-24581500

ABSTRACT

Mucus production by goblet cells of the large intestine serves as a crucial antimicrobial protective mechanism at the interface between the eukaryotic and prokaryotic cells of the mammalian intestinal ecosystem. However, the regulatory pathways involved in goblet cell-induced mucus secretion remain largely unknown. Here, we demonstrate that the NLRP6 inflammasome, a recently described regulator of colonic microbiota composition and biogeographical distribution, is a critical orchestrator of goblet cell mucin granule exocytosis. NLRP6 deficiency leads to defective autophagy in goblet cells and abrogated mucus secretion into the large intestinal lumen. Consequently, NLRP6 inflammasome-deficient mice are unable to clear enteric pathogens from the mucosal surface, rendering them highly susceptible to persistent infection. This study identifies an innate immune regulatory pathway governing goblet cell mucus secretion, linking nonhematopoietic inflammasome signaling to autophagy and highlighting the goblet cell as a critical innate immune player in the control of intestinal host-microbial mutualism. PAPERCLIP:


Subject(s)
Colon/immunology , Goblet Cells/immunology , Inflammasomes/immunology , Intestinal Mucosa/immunology , Receptors, Cell Surface/immunology , Animals , Autophagy , Colitis/immunology , Colitis/microbiology , Colon/microbiology , Epithelial Cells/immunology , Epithelial Cells/metabolism , Goblet Cells/cytology , Intestinal Mucosa/cytology , Intestinal Mucosa/metabolism , Mice , Mucus/metabolism
3.
Nature ; 621(7980): 821-829, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37586410

ABSTRACT

Endothelial cells line the blood and lymphatic vasculature, and act as an essential physical barrier, control nutrient transport, facilitate tissue immunosurveillance and coordinate angiogenesis and lymphangiogenesis1,2. In the intestine, dietary and microbial cues are particularly important in the regulation of organ homeostasis. However, whether enteric endothelial cells actively sense and integrate such signals is currently unknown. Here we show that the aryl hydrocarbon receptor (AHR) acts as a critical node for endothelial cell sensing of dietary metabolites in adult mice and human primary endothelial cells. We first established a comprehensive single-cell endothelial atlas of the mouse small intestine, uncovering the cellular complexity and functional heterogeneity of blood and lymphatic endothelial cells. Analyses of AHR-mediated responses at single-cell resolution identified tissue-protective transcriptional signatures and regulatory networks promoting cellular quiescence and vascular normalcy at steady state. Endothelial AHR deficiency in adult mice resulted in dysregulated inflammatory responses and the initiation of proliferative pathways. Furthermore, endothelial sensing of dietary AHR ligands was required for optimal protection against enteric infection. In human endothelial cells, AHR signalling promoted quiescence and restrained activation by inflammatory mediators. Together, our data provide a comprehensive dissection of the effect of environmental sensing across the spectrum of enteric endothelia, demonstrating that endothelial AHR signalling integrates dietary cues to maintain tissue homeostasis by promoting endothelial cell quiescence and vascular normalcy.


Subject(s)
Endothelial Cells , Receptors, Aryl Hydrocarbon , Humans , Animals , Mice , Receptors, Aryl Hydrocarbon/metabolism , Endothelial Cells/metabolism , Intestines , Signal Transduction , Homeostasis , Ligands
4.
Nucleic Acids Res ; 51(17): 8925-8933, 2023 09 22.
Article in English | MEDLINE | ID: mdl-37592747

ABSTRACT

Bacterial conjugation was first described by Lederberg and Tatum in the 1940s following the discovery of the F plasmid. During conjugation a plasmid is transferred unidirectionally from one bacterium (the donor) to another (the recipient), in a contact-dependent manner. Conjugation has been regarded as a promiscuous mechanism of DNA transfer, with host range determined by the recipient downstream of plasmid transfer. However, recent data have shown that F-like plasmids, akin to tailed Caudovirales bacteriophages, can pick their host bacteria prior to transfer by expressing one of at least four structurally distinct isoforms of the outer membrane protein TraN, which has evolved to function as a highly sensitive sensor on the donor cell surface. The TraN sensor appears to pick bacterial hosts by binding compatible outer membrane proteins in the recipient. The TraN variants can be divided into specialist and generalist sensors, conferring narrow and broad plasmid host range, respectively. In this review we discuss recent advances in our understanding of the function of the TraN sensor at the donor-recipient interface, used by F-like plasmids to select bacterial hosts within polymicrobial communities prior to DNA transfer.


Subject(s)
Bacteria , Conjugation, Genetic , Plasmids , Bacteria/genetics , Bacteria/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , DNA, Bacterial/genetics , F Factor/genetics , Membrane Proteins/genetics , Plasmids/genetics
5.
Proc Natl Acad Sci U S A ; 119(38): e2203593119, 2022 09 20.
Article in English | MEDLINE | ID: mdl-36095213

ABSTRACT

Outer membrane porins in Gram-negative bacteria facilitate antibiotic influx. In Klebsiella pneumoniae, modifications in the porin OmpK36 are implicated in increasing resistance to carbapenems. An analysis of large K. pneumoniae genome collections, encompassing major healthcare-associated clones, revealed the recurrent emergence of a synonymous cytosine-to-thymine transition at position 25 (25c > t) in ompK36. We show that the 25c > t transition increases carbapenem resistance through depletion of OmpK36 from the outer membrane. The mutation attenuates K. pneumoniae in a murine pneumonia model, which accounts for its limited clonal expansion observed by phylogenetic analysis. However, in the context of carbapenem treatment, the 25c > t transition tips the balance toward treatment failure, thus accounting for its recurrent emergence. Mechanistically, the 25c > t transition mediates an intramolecular messenger RNA (mRNA) interaction between a uracil encoded by 25t and the first adenine within the Shine-Dalgarno sequence. This specific interaction leads to the formation of an RNA stem structure, which obscures the ribosomal binding site thus disrupting translation. While mutations reducing OmpK36 expression via transcriptional silencing are known, we uniquely demonstrate the repeated selection of a synonymous ompK36 mutation mediating translational suppression in response to antibiotic pressure.


Subject(s)
Anti-Bacterial Agents , Bacterial Proteins , Carbapenems , Klebsiella pneumoniae , Porins , beta-Lactam Resistance , Animals , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Bacterial Proteins/classification , Bacterial Proteins/genetics , Carbapenems/pharmacology , Carbapenems/therapeutic use , Disease Models, Animal , Klebsiella Infections/drug therapy , Klebsiella Infections/microbiology , Klebsiella pneumoniae/drug effects , Klebsiella pneumoniae/genetics , Mice , Microbial Sensitivity Tests , Mutation , Phylogeny , Pneumonia, Bacterial/drug therapy , Pneumonia, Bacterial/microbiology , Porins/classification , Porins/genetics , RNA, Messenger/metabolism , beta-Lactam Resistance/genetics
6.
PLoS Pathog ; 18(7): e1010334, 2022 07.
Article in English | MEDLINE | ID: mdl-35816554

ABSTRACT

Mutations in outer membrane porins act in synergy with carbapenemase enzymes to increase carbapenem resistance in the important nosocomial pathogen, Klebsiella pneumoniae (KP). A key example is a di-amino acid insertion, Glycine-Aspartate (GD), in the extracellular loop 3 (L3) region of OmpK36 which constricts the pore and restricts entry of carbapenems into the bacterial cell. Here we combined genomic and experimental approaches to characterise the diversity, spread and impact of different L3 insertion types in OmpK36. We identified L3 insertions in 3588 (24.1%) of 14,888 KP genomes with an intact ompK36 gene from a global collection. GD insertions were most common, with a high concentration in the ST258/512 clone that has spread widely in Europe and the Americas. Aspartate (D) and Threonine-Aspartate (TD) insertions were prevalent in genomes from Asia, due in part to acquisitions by KP sequence types ST16 and ST231 and subsequent clonal expansions. By solving the crystal structures of novel OmpK36 variants, we found that the TD insertion causes a pore constriction of 41%, significantly greater than that achieved by GD (10%) or D (8%), resulting in the highest levels of resistance to selected antibiotics. We show that in the absence of antibiotics KP mutants harbouring these L3 insertions exhibit both an in vitro and in vivo competitive disadvantage relative to the isogenic parental strain expressing wild type OmpK36. We propose that this explains the reversion of GD and TD insertions observed at low frequency among KP genomes. Finally, we demonstrate that strains expressing L3 insertions remain susceptible to drugs targeting carbapenemase-producing KP, including novel beta lactam-beta lactamase inhibitor combinations. This study provides a contemporary global view of OmpK36-mediated resistance mechanisms in KP, integrating surveillance and experimental data to guide treatment and drug development strategies.


Subject(s)
Klebsiella Infections , Klebsiella pneumoniae , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Aspartic Acid , Bacterial Proteins/metabolism , Clone Cells , Humans , Klebsiella Infections/drug therapy , Klebsiella Infections/microbiology , Microbial Sensitivity Tests , Porins/genetics , Porins/metabolism , beta-Lactamases/genetics , beta-Lactamases/metabolism
7.
Proc Natl Acad Sci U S A ; 118(2)2021 01 12.
Article in English | MEDLINE | ID: mdl-33397726

ABSTRACT

Enteropathogenic Escherichia coli (EPEC) and enterohemorrhagic Escherichia coli (EHEC) utilize a macromolecular type III secretion system (T3SS) to inject effector proteins into eukaryotic cells. This apparatus spans the inner and outer bacterial membranes and includes a helical needle protruding into the extracellular space. Thus far observed only in EPEC and EHEC and not found in other pathogenic Gram-negative bacteria that have a T3SS is an additional helical filament made by the EspA protein that forms a long extension to the needle, mediating both attachment to eukaryotic cells and transport of effector proteins through the intestinal mucus layer. Here, we present the structure of the EspA filament from EPEC at 3.4 Å resolution. The structure reveals that the EspA filament is a right-handed 1-start helical assembly with a conserved lumen architecture with respect to the needle to ensure the seamless transport of unfolded cargos en route to the target cell. This functional conservation is despite the fact that there is little apparent overall conservation at the level of sequence or structure with the needle. We also unveil the molecular details of the immunodominant EspA epitope that can now be exploited for the rational design of epitope display systems.


Subject(s)
Escherichia coli Proteins/metabolism , Escherichia coli Proteins/ultrastructure , Type III Secretion Systems/metabolism , Cryoelectron Microscopy/methods , Cytoskeleton/metabolism , Enterohemorrhagic Escherichia coli/metabolism , Enteropathogenic Escherichia coli/metabolism , Escherichia coli/metabolism , Escherichia coli Proteins/physiology , Humans , Protein Transport/physiology , Type III Secretion Systems/physiology
8.
J Bacteriol ; 205(4): e0006123, 2023 04 25.
Article in English | MEDLINE | ID: mdl-36988519

ABSTRACT

Horizontal gene transfer via conjugation plays a major role in bacterial evolution. In F-like plasmids, efficient DNA transfer is mediated by close association between donor and recipient bacteria. This process, known as mating pair stabilization (MPS), is mediated by interactions between the plasmid-encoded outer membrane (OM) protein TraN in the donor and chromosomally-encoded OM proteins in the recipient. We have recently reported the existence of 7 TraN sequence types, which are grouped into 4 structural types, that we named TraNα, TraNß, TraNγ, and TraNδ. Moreover, we have shown specific pairing between TraNα and OmpW, TraNß and OmpK36 of Klebsiella pneumoniae, TraNγ and OmpA, and TraNδ and OmpF. In this study, we found that, although structurally similar, TraNα encoded by the Salmonella enterica pSLT plasmid (TraNα2) binds OmpW in both Escherichia coli and Citrobacter rodentium, while TraNα encoded by the R100-1 plasmid (TraNα1) only binds OmpW in E. coli. AlphaFold2 predictions suggested that this specificity is mediated by a single amino acid difference in loop 3 of OmpW, which we confirmed experimentally. Moreover, we show that single amino acids insertions into loop 3 of OmpK36 affect TraNß-mediated conjugation efficiency of the K. pneumoniae resistance plasmid pKpQIL. Lastly, we report that TraNß can also mediate MPS by binding OmpK35, making it the first TraN variant that can bind more than one OM protein in the recipient. Together, these data show that subtle sequence differences in the OM receptors can impact TraN-mediated conjugation efficiency. IMPORTANCE Conjugation plays a central role in the spread of antimicrobial resistance genes among bacterial pathogens. Efficient conjugation is mediated by formation of mating pairs via a pilus, followed by mating pair stabilization (MPS), mediated by tight interactions between the plasmid-encoded outer membrane protein (OMP) TraN in the donor (of which there are 7 sequence types grouped into the 4 structural isoforms α, ß, γ, and δ), and an OMP receptor in the recipient (OmpW, OmpK36, OmpA, and OmpF, respectively). In this study, we found that subtle differences in OmpW and OmpK36 have significant consequences on conjugation efficiency and specificity, highlighting the existence of selective pressure affecting plasmid-host compatibility and the flow of horizontal gene transfer in bacteria.


Subject(s)
Escherichia coli , F Factor , Escherichia coli/genetics , Escherichia coli/metabolism , Amino Acid Sequence , Conjugation, Genetic , Plasmids/genetics , Membrane Proteins/metabolism , Protein Isoforms/genetics , Bacterial Proteins/genetics , Bacterial Proteins/metabolism
9.
Traffic ; 22(12): 412-424, 2021 12.
Article in English | MEDLINE | ID: mdl-34533884

ABSTRACT

Endoplasmic reticulum (ER)-to-Golgi trafficking is an essential and highly conserved cellular process. The coat protein complex-II (COPII) arm of the trafficking machinery incorporates a wide array of cargo proteins into vesicles through direct or indirect interactions with Sec24, the principal subunit of the COPII coat. Approximately one-third of all mammalian proteins rely on the COPII-mediated secretory pathway for membrane insertion or secretion. There are four mammalian Sec24 paralogs and three yeast Sec24 paralogs with emerging evidence of paralog-specific cargo interaction motifs. Furthermore, individual paralogs also differ in their affinity for a subset of sorting motifs present on cargo proteins. As with many aspects of protein trafficking, we lack a systematic and thorough understanding of the interaction of Sec24 with cargoes. This systematic review focuses on the current knowledge of cargo binding to both yeast and mammalian Sec24 paralogs and their ER export motifs. The analyses show that Sec24 paralog specificity of cargo (and cargo receptors) range from exclusive paralog dependence or preference to partial redundancy. We also discuss how the Sec24 secretion system is hijacked by viral (eg, VSV-G, Hepatitis B envelope protein) and bacterial (eg, the enteropathogenic Escherichia coli type III secretion system effector NleA/EspI) pathogens.


Subject(s)
Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Animals , COP-Coated Vesicles/metabolism , Endoplasmic Reticulum/metabolism , Golgi Apparatus/metabolism , Mammals/metabolism , Membrane Proteins/metabolism , Protein Transport , Proteins/metabolism , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Secretory Pathway
10.
Mol Microbiol ; 117(2): 480-492, 2022 02.
Article in English | MEDLINE | ID: mdl-34897856

ABSTRACT

The enteropathogenic Escherichia coli (EPEC) type III secretion system effector Tir, which mediates intimate bacterial attachment to epithelial cells, also triggers Ca2+ influx followed by LPS entry and caspase-4-dependent pyroptosis, which could be antagonized by the effector NleF. Here we reveal the mechanism by which EPEC induces Ca2+ influx. We show that in the intestinal epithelial cell line SNU-C5, Tir activates the mechano/osmosensitive cation channel TRPV2 which triggers extracellular Ca2+ influx. Tir-induced Ca2+ influx could be blocked by siRNA silencing of TRPV2, pre-treatment with the TRPV2 inhibitor SET2 or by growing cells in low osmolality medium. Pharmacological activation of TRPV2 in the absence of Tir failed to initiate caspase-4-dependent cell death, confirming the necessity of Tir. Consistent with the model implicating activation on translocation of TRPV2 from the ER to plasma membrane, inhibition of protein trafficking by either brefeldin A or the effector NleA prevented TRPV2 activation and cell death. While infection with EPECΔnleA triggered pyroptotic cell death, this could be prevented by NleF. Taken together this study shows that while integration of Tir into the plasma membrane activates TRPV2, EPEC uses NleA to inhibit TRPV2 trafficking and NleF to inhibit caspase-4 and pyroptosis.


Subject(s)
Enteropathogenic Escherichia coli , Escherichia coli Proteins , Enteropathogenic Escherichia coli/genetics , Escherichia coli Proteins/metabolism , Protein Transport , Pyroptosis , Type III Secretion Systems/genetics , Type III Secretion Systems/metabolism
11.
Immunity ; 41(5): 776-88, 2014 Nov 20.
Article in English | MEDLINE | ID: mdl-25456160

ABSTRACT

Interleukin-22 (IL-22) plays a critical role in mucosal defense, although the molecular mechanisms that ensure IL-22 tissue distribution remain poorly understood. We show that the CXCL16-CXCR6 chemokine-chemokine receptor axis regulated group 3 innate lymphoid cell (ILC3) diversity and function. CXCL16 was constitutively expressed by CX3CR1(+) intestinal dendritic cells (DCs) and coexpressed with IL-23 after Citrobacter rodentium infection. Intestinal ILC3s expressed CXCR6 and its ablation generated a selective loss of the NKp46(+) ILC3 subset, a depletion of intestinal IL-22, and the inability to control C. rodentium infection. CD4(+) ILC3s were unaffected by CXCR6 deficiency and remained clustered within lymphoid follicles. In contrast, the lamina propria of Cxcr6(-/-) mice was devoid of ILC3s. The loss of ILC3-dependent IL-22 epithelial stimulation reduced antimicrobial peptide expression that explained the sensitivity of Cxcr6(-/-) mice to C. rodentium. Our results delineate a critical CXCL16-CXCR6 crosstalk that coordinates the intestinal topography of IL-22 secretion required for mucosal defense.


Subject(s)
Chemokine CXCL6/immunology , Enterobacteriaceae Infections/immunology , Interleukins/immunology , Mucous Membrane/immunology , Receptors, CXCR/immunology , Animals , Antigens, Ly/biosynthesis , CD4-Positive T-Lymphocytes/immunology , CX3C Chemokine Receptor 1 , Chemokine CXCL16 , Chemokine CXCL6/biosynthesis , Citrobacter rodentium/immunology , Dendritic Cells/immunology , Interleukin-23/biosynthesis , Interleukins/biosynthesis , Mice , Mice, Inbred C57BL , Mice, Transgenic , Natural Cytotoxicity Triggering Receptor 1/biosynthesis , Receptors, CXCR/biosynthesis , Receptors, CXCR/genetics , Receptors, CXCR6 , Receptors, Chemokine/biosynthesis , Receptors, Chemokine/immunology , Interleukin-22
12.
PLoS Biol ; 18(12): e3000986, 2020 12.
Article in English | MEDLINE | ID: mdl-33378358

ABSTRACT

Clustering of the enteropathogenic Escherichia coli (EPEC) type III secretion system (T3SS) effector translocated intimin receptor (Tir) by intimin leads to actin polymerisation and pyroptotic cell death in macrophages. The effect of Tir clustering on the viability of EPEC-infected intestinal epithelial cells (IECs) is unknown. We show that EPEC induces pyroptosis in IECs in a Tir-dependent but actin polymerisation-independent manner, which was enhanced by priming with interferon gamma (IFNγ). Mechanistically, Tir clustering triggers rapid Ca2+ influx, which induces lipopolysaccharide (LPS) internalisation, followed by activation of caspase-4 and pyroptosis. Knockdown of caspase-4 or gasdermin D (GSDMD), translocation of NleF, which blocks caspase-4 or chelation of extracellular Ca2+, inhibited EPEC-induced cell death. IEC lines with low endogenous abundance of GSDMD were resistant to Tir-induced cell death. Conversely, ATP-induced extracellular Ca2+ influx enhanced cell death, which confirmed the key regulatory role of Ca2+ in EPEC-induced pyroptosis. We reveal a novel mechanism through which infection with an extracellular pathogen leads to pyroptosis in IECs.


Subject(s)
Calcium/metabolism , Escherichia coli Proteins/metabolism , Pyroptosis/physiology , Receptors, Cell Surface/metabolism , Actins/metabolism , Adhesins, Bacterial/metabolism , Adhesins, Bacterial/physiology , Cluster Analysis , Enteropathogenic Escherichia coli/metabolism , Enteropathogenic Escherichia coli/pathogenicity , Epithelial Cells/metabolism , Escherichia coli Infections/metabolism , Escherichia coli Proteins/physiology , HeLa Cells , Humans , Intestinal Mucosa/metabolism , Intestines/physiology , Intracellular Signaling Peptides and Proteins/metabolism , Phosphate-Binding Proteins/metabolism , Protein Transport , Receptors, Cell Surface/physiology , Signal Transduction/physiology , Type III Secretion Systems/metabolism
13.
Cell Microbiol ; 23(9): e13366, 2021 09.
Article in English | MEDLINE | ID: mdl-34021690

ABSTRACT

Many enteric pathogens employ a type III secretion system (T3SS) to translocate effector proteins directly into the host cell cytoplasm, where they subvert signalling pathways of the intestinal epithelium. Here, we report that the anti-apoptotic regulator HS1-associated protein X1 (HAX-1) is an interaction partner of the T3SS effectors EspO of enterohaemorrhagic Escherichia coli (EHEC) and Citrobacter rodentium, OspE of Shigella flexneri and Osp1STYM of Salmonella enterica serovar Typhimurium. EspO, OspE and Osp1STYM have previously been reported to interact with the focal adhesions protein integrin linked kinase (ILK). We found that EspO localizes both to the focal adhesions (ILK localisation) and mitochondria (HAX-1 localisation), and that increased expression of HAX-1 leads to enhanced mitochondrial localisation of EspO. Ectopic expression of EspO, OspE and Osp1STYM protects cells from apoptosis induced by staurosporine and tunicamycin. Depleting cells of HAX-1 indicates that the anti-apoptotic activity of EspO is HAX-1 dependent. Both HAX-1 and ILK were further confirmed as EspO1-interacting proteins during infection using T3SS-delivered EspO1. Using cell detachment as a proxy for cell death we confirmed that T3SS-delivered EspO1 could inhibit cell death induced during EPEC infection, to a similar extent as the anti-apoptotic effector NleH, or treatment with the pan caspase inhibitor z-VAD. In contrast, in cells lacking HAX-1, EspO1 was no longer able to protect against cell detachment, while NleH1 and z-VAD maintained their protective activity. Therefore, during both infection and ectopic expression EspO protects cells from cell death by interacting with HAX-1. These results suggest that despite the differences between EHEC, C. rodentium, Shigella and S. typhimurium infections, hijacking HAX-1 anti-apoptotic signalling is a common strategy to maintain the viability of infected cells. TAKE AWAY: EspO homologues are found in EHEC, Shigella, S. typhimurium and some EPEC. EspO homologues interact with HAX-1. EspO protects infected cells from apoptosis. EspO joins a growing list of T3SS effectors that manipulate cell death pathways.


Subject(s)
Enterohemorrhagic Escherichia coli , Enteropathogenic Escherichia coli , Escherichia coli Proteins , Apoptosis , Citrobacter rodentium , Type III Secretion Systems
14.
Cell Microbiol ; 23(5): e13306, 2021 05.
Article in English | MEDLINE | ID: mdl-33355403

ABSTRACT

Salmonella Paratyphi A (SPtA) remains one of the leading causes of enteric (typhoid) fever. Yet, despite the recent increased rate of isolation from patients in Asia, our understanding of its pathogenesis is incomplete. Here we investigated inflammasome activation in human macrophages infected with SPtA. We found that SPtA induces GSDMD-mediated pyroptosis via activation of caspase-1, caspase-4 and caspase-8. Although we observed no cell death in the absence of a functional Salmonella pathogenicity island-1 (SPI-1) injectisome, HilA-mediated overexpression of the SPI-1 regulon enhances pyroptosis. SPtA expresses FepE, an LPS O-antigen length regulator, which induces the production of very long O-antigen chains. Using a ΔfepE mutant we established that the very long O-antigen chains interfere with bacterial interactions with epithelial cells and impair inflammasome-mediated macrophage cell death. Salmonella Typhimurium (STm) serovar has a lower FepE expression than SPtA, and triggers higher pyroptosis, conversely, increasing FepE expression in STm reduced pyroptosis. These results suggest that differential expression of FepE results in serovar-specific inflammasome modulation, which mirrors the pro- and anti-inflammatory strategies employed by STm and SPtA, respectively. Our studies point towards distinct mechanisms of virulence of SPtA, whereby it attenuates inflammasome-mediated detection through the elaboration of very long LPS O-polysaccharides.


Subject(s)
Inflammasomes/metabolism , Macrophages/microbiology , Macrophages/physiology , O Antigens/physiology , Paratyphoid Fever/microbiology , Pyroptosis , Salmonella paratyphi A/pathogenicity , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Caspases/metabolism , HeLa Cells , Humans , Intracellular Signaling Peptides and Proteins/metabolism , Macrophages/immunology , O Antigens/chemistry , Phosphate-Binding Proteins/metabolism , Salmonella paratyphi A/immunology , THP-1 Cells , Type III Secretion Systems/metabolism , Virulence , Virulence Factors/metabolism
15.
Proc Natl Acad Sci U S A ; 116(6): 2265-2273, 2019 02 05.
Article in English | MEDLINE | ID: mdl-30659146

ABSTRACT

The genus Legionella comprises 65 species, among which Legionella pneumophila is a human pathogen causing severe pneumonia. To understand the evolution of an environmental to an accidental human pathogen, we have functionally analyzed 80 Legionella genomes spanning 58 species. Uniquely, an immense repository of 18,000 secreted proteins encoding 137 different eukaryotic-like domains and over 200 eukaryotic-like proteins is paired with a highly conserved type IV secretion system (T4SS). Specifically, we show that eukaryotic Rho- and Rab-GTPase domains are found nearly exclusively in eukaryotes and Legionella Translocation assays for selected Rab-GTPase proteins revealed that they are indeed T4SS secreted substrates. Furthermore, F-box, U-box, and SET domains were present in >70% of all species, suggesting that manipulation of host signal transduction, protein turnover, and chromatin modification pathways are fundamental intracellular replication strategies for legionellae. In contrast, the Sec-7 domain was restricted to L. pneumophila and seven other species, indicating effector repertoire tailoring within different amoebae. Functional screening of 47 species revealed 60% were competent for intracellular replication in THP-1 cells, but interestingly, this phenotype was associated with diverse effector assemblages. These data, combined with evolutionary analysis, indicate that the capacity to infect eukaryotic cells has been acquired independently many times within the genus and that a highly conserved yet versatile T4SS secretes an exceptional number of different proteins shaped by interdomain gene transfer. Furthermore, we revealed the surprising extent to which legionellae have coopted genes and thus cellular functions from their eukaryotic hosts, providing an understanding of how dynamic reshuffling and gene acquisition have led to the emergence of major human pathogens.


Subject(s)
Genome, Bacterial , Legionella/physiology , Legionellosis/microbiology , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Bacterial Secretion Systems/genetics , Computational Biology/methods , Evolution, Molecular , Genomics/methods , Humans , Intracellular Space/microbiology , Legionella/classification , Phylogeny , Protein Domains
16.
EMBO J ; 36(23): 3517-3531, 2017 12 01.
Article in English | MEDLINE | ID: mdl-29109154

ABSTRACT

Type III secretion (T3S), a protein export pathway common to Gram-negative pathogens, comprises a trans-envelope syringe, the injectisome, with a cytoplasm-facing translocase channel. Exported substrates are chaperone-delivered to the translocase, EscV in enteropathogenic Escherichia coli, and cross it in strict hierarchical manner, for example, first "translocators", then "effectors". We dissected T3S substrate targeting and hierarchical switching by reconstituting them in vitro using inverted inner membrane vesicles. EscV recruits and conformationally activates the tightly membrane-associated pseudo-effector SepL and its chaperone SepD. This renders SepL a high-affinity receptor for translocator/chaperone pairs, recognizing specific chaperone signals. In a second, SepD-coupled step, translocators docked on SepL become secreted. During translocator secretion, SepL/SepD suppress effector/chaperone binding to EscV and prevent premature effector secretion. Disengagement of the SepL/SepD switch directs EscV to dedicated effector export. These findings advance molecular understanding of T3S and reveal a novel mechanism for hierarchical trafficking regulation in protein secretion channels.


Subject(s)
Enteropathogenic Escherichia coli/metabolism , Escherichia coli Proteins/metabolism , Type III Secretion Systems/metabolism , Cell Membrane/metabolism , Enteropathogenic Escherichia coli/genetics , Enteropathogenic Escherichia coli/pathogenicity , Escherichia coli Proteins/chemistry , Escherichia coli Proteins/genetics , Models, Biological , Models, Molecular , Molecular Chaperones/chemistry , Molecular Chaperones/genetics , Molecular Chaperones/metabolism , Protein Conformation , Protein Interaction Domains and Motifs , Protein Transport , Type III Secretion Systems/chemistry , Type III Secretion Systems/genetics
17.
PLoS Pathog ; 15(8): e1008031, 2019 08.
Article in English | MEDLINE | ID: mdl-31465434

ABSTRACT

Enterohemorrhagic E. coli (EHEC) is a human intestinal pathogen that causes hemorrhagic colitis and hemolytic uremic syndrome. No vaccines or specific therapies are currently available to prevent or treat these infections. EHEC tightly attaches to the intestinal epithelium by injecting the intimin receptor Tir into the host cell via a type III secretion system (T3SS). In this project, we identified a camelid single domain antibody (nanobody), named TD4, that recognizes a conserved Tir epitope overlapping the binding site of its natural ligand intimin with high affinity and stability. We show that TD4 inhibits attachment of EHEC to cultured human HeLa cells by preventing Tir clustering by intimin, activation of downstream actin polymerization and pedestal formation. Furthermore, we demonstrate that TD4 significantly reduces EHEC adherence to human colonic mucosa in in vitro organ cultures. Altogether, these results suggest that nanobody-based therapies hold potential in the development of much needed treatment and prevention strategies against EHEC infection.


Subject(s)
Bacterial Adhesion/physiology , Colon/metabolism , Enterohemorrhagic Escherichia coli/physiology , Escherichia coli Infections/metabolism , Escherichia coli Proteins/antagonists & inhibitors , Receptors, Cell Surface/antagonists & inhibitors , Single-Domain Antibodies/pharmacology , Amino Acid Sequence , Animals , Bacterial Adhesion/drug effects , Binding Sites , Camelus , Colon/microbiology , Colon/pathology , Enterohemorrhagic Escherichia coli/drug effects , Escherichia coli Infections/microbiology , Escherichia coli Infections/pathology , Escherichia coli Proteins/immunology , Escherichia coli Proteins/metabolism , HeLa Cells , Humans , Receptors, Cell Surface/immunology , Receptors, Cell Surface/metabolism , Sequence Homology , Single-Domain Antibodies/immunology
18.
Cell Microbiol ; 22(4): e13184, 2020 04.
Article in English | MEDLINE | ID: mdl-32185892

ABSTRACT

Enteric pathogen-host interactions occur at multiple interfaces, including the intestinal epithelium and deeper organs of the immune system. Microbial ligands and activities are detected by host sensors that elicit a range of immune responses. Membrane-bound toll-like receptors and cytosolic inflammasome pathways are key signal transducers that trigger the production of pro-inflammatory molecules, such as cytokines and chemokines, and regulate cell death in response to infection. In recent years, the inflammasomes have emerged as a key frontier in the tussle between bacterial pathogens and the host. Inflammasomes are complexes that activate caspase-1 and are regulated by related caspases, such as caspase-11, -4, -5 and -8. Importantly, enteric bacterial pathogens can actively engage or evade inflammasome signalling systems. Extracellular, vacuolar and cytosolic bacteria have developed divergent strategies to subvert inflammasomes. While some pathogens take advantage of inflammasome activation (e.g. Listeria monocytogenes, Helicobacter pylori), others (e.g. E. coli, Salmonella, Shigella, Yersinia sp.) deploy a range of virulence factors, mainly type 3 secretion system effectors, that subvert or inhibit inflammasomes. In this review we focus on inflammasome pathways and their immune functions, and discuss how enteric bacterial pathogens interact with them. These studies have not only shed light on inflammasome-mediated immunity, but also the exciting area of mammalian cytosolic immune surveillance.


Subject(s)
Cytosol/immunology , Enterobacteriaceae/pathogenicity , Host-Pathogen Interactions/immunology , Inflammasomes/genetics , Signal Transduction/immunology , Animals , Cell Death , Cytosol/microbiology , Enterobacteriaceae/immunology , Host-Pathogen Interactions/genetics , Humans , Inflammasomes/immunology , Macrophages/microbiology , Mice , Type III Secretion Systems/metabolism
19.
Cell Microbiol ; 22(1): e13126, 2020 01.
Article in English | MEDLINE | ID: mdl-31610608

ABSTRACT

The mouse pathogen Citrobacter rodentium is used to model infections with enterohaemorrhagic and enteropathogenic Escherichia coli (EHEC and EPEC). Pathogenesis is commonly modelled in mice developing mild disease (e.g., C57BL/6). However, little is known about host responses in mice exhibiting severe colitis (e.g., C3H/HeN), which arguably provide a more clinically relevant model for human paediatric enteric infection. Infection of C3H/HeN mice with C. rodentium results in rapid colonic colonisation, coinciding with induction of key inflammatory signatures and colonic crypt hyperplasia. Infection also induces dramatic changes to bioenergetics in intestinal epithelial cells, with transition from oxidative phosphorylation (OXPHOS) to aerobic glycolysis and higher abundance of SGLT4, LDHA, and MCT4. Concomitantly, mitochondrial proteins involved in the TCA cycle and OXPHOS were in lower abundance. Similar to observations in C57BL/6 mice, we detected simultaneous activation of cholesterol biogenesis, import, and efflux. Distinctly, however, the pattern recognition receptors NLRP3 and ALPK1 were specifically induced in C3H/HeN. Using cell-based assays revealed that C. rodentium activates the ALPK1/TIFA axis, which is dependent on the ADP-heptose biosynthesis pathway but independent of the Type III secretion system. This study reveals for the first time the unfolding intestinal epithelial cells' responses during severe infectious colitis, which resemble EPEC human infections.


Subject(s)
Citrobacter rodentium/immunology , Enterobacteriaceae Infections/immunology , Host Microbial Interactions , Inflammation/microbiology , Intestinal Mucosa/microbiology , Animals , Citrobacter rodentium/pathogenicity , Colitis/immunology , Colitis/microbiology , Enterobacteriaceae Infections/metabolism , Female , Gastrointestinal Microbiome , HeLa Cells , Humans , Intestinal Mucosa/immunology , Mice , Mice, Inbred C3H , Mice, Inbred C57BL , Proteomics , Specific Pathogen-Free Organisms
20.
J Biol Chem ; 294(8): 2862-2879, 2019 02 22.
Article in English | MEDLINE | ID: mdl-30573678

ABSTRACT

Legionella pneumophila causes Legionnaires' disease, a severe form of pneumonia. L. pneumophila translocates more than 300 effectors into host cells via its Dot/Icm (Defective in organelle trafficking/Intracellular multiplication) type IV secretion system to enable its replication in target cells. Here, we studied the effector LtpM, which is encoded in a recombination hot spot in L. pneumophila Paris. We show that a C-terminal phosphoinositol 3-phosphate (PI3P)-binding domain, also found in otherwise unrelated effectors, targets LtpM to the Legionella-containing vacuole and to early and late endosomes. LtpM expression in yeast caused cytotoxicity. Sequence comparison and structural homology modeling of the N-terminal domain of LtpM uncovered a remote similarity to the glycosyltransferase (GT) toxin PaTox from the bacterium Photorhabdus asymbiotica; however, instead of the canonical DxD motif of GT-A type glycosyltransferases, essential for enzyme activity and divalent cation coordination, we found that a DxN motif is present in LtpM. Using UDP-glucose as sugar donor, we show that purified LtpM nevertheless exhibits glucohydrolase and autoglucosylation activity in vitro and demonstrate that PI3P binding activates LtpM's glucosyltransferase activity toward protein substrates. Substitution of the aspartate or the asparagine in the DxN motif abolished the activity of LtpM. Moreover, whereas all glycosyltransferase toxins and effectors identified so far depend on the presence of divalent cations, LtpM is active in their absence. Proteins containing LtpM-like GT domains are encoded in the genomes of other L. pneumophila isolates and species, suggesting that LtpM is the first member of a novel family of glycosyltransferase effectors employed to subvert hosts.


Subject(s)
Bacterial Proteins/metabolism , Glucosyltransferases/metabolism , Legionella pneumophila/enzymology , Phosphatidylinositols/metabolism , Amino Acid Sequence , Bacterial Proteins/chemistry , Endosomes , Glucosyltransferases/chemistry , HeLa Cells , Humans , Protein Transport , Sequence Homology
SELECTION OF CITATIONS
SEARCH DETAIL