Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
Cell Microbiol ; 20(4)2018 04.
Article in English | MEDLINE | ID: mdl-29250873

ABSTRACT

Salmonella enterica induces membrane ruffling and genesis of macropinosomes during its interactions with epithelial cells. This is achieved through the type three secretion system-1, which first mediates bacterial attachment to host cells and then injects bacterial effector proteins to alter host behaviour. Next, Salmonella enters into the targeted cell within an early membrane-bound compartment that matures into a slow growing, replicative niche called the Salmonella Containing Vacuole (SCV). Alternatively, the pathogen disrupts the membrane of the early compartment and replicate at high rate in the cytosol. Here, we show that the in situ formed macropinosomes, which have been previously postulated to be relevant for the step of Salmonella entry, are key contributors for the formation of the mature intracellular niche of Salmonella. We first clarify the primary mode of type three secretion system-1 induced Salmonella entry into epithelial cells by combining classical fluorescent microscopy with cutting edge large volume electron microscopy. We observed that Salmonella, similarly to Shigella, enters epithelial cells inside tight vacuoles rather than in large macropinosomes. We next apply this technology to visualise rupturing Salmonella containing compartments, and we use extended time-lapse microscopy to establish early markers that define which Salmonella will eventually hyper replicate. We show that at later infection stages, SCVs harbouring replicating Salmonella have previously fused with the in situ formed macropinosomes. In contrast, such fusion events could not be observed for hyper-replicating Salmonella, suggesting that fusion of the Salmonella entry compartment with macropinosomes is the first committed step of SCV formation.


Subject(s)
Epithelial Cells/microbiology , Epithelial Cells/ultrastructure , Salmonella Infections/microbiology , Salmonella Infections/pathology , Salmonella enterica/physiology , Cytosol/metabolism , Cytosol/ultrastructure , HeLa Cells , Host-Pathogen Interactions , Humans
2.
Cell Microbiol ; 17(12): 1699-720, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26084942

ABSTRACT

Salmonella invades epithelial cells and survives within a membrane-bound compartment, the Salmonella-containing vacuole (SCV). We isolated and determined the host protein composition of the SCV at 30 min and 3 h of infection to identify and characterize novel regulators of intracellular bacterial localization and growth. Quantitation of the SCV protein content revealed 392 host proteins specifically enriched at SCVs, out of which 173 associated exclusively with early SCVs, 124 with maturing SCV and 95 proteins during both time-points. Vacuole interactions with endoplasmic reticulum-derived coat protein complex II vesicles modulate early steps of SCV maturation, promoting SCV rupture and bacterial hyper-replication within the host cytosol. On the other hand, SCV interactions with VAMP7-positive lysosome-like vesicles promote Salmonella-induced filament formation and bacterial growth within the late SCV. Our results reveal that the dynamic communication between the SCV and distinct host organelles affects both intracellular Salmonella localization and growth at successive steps of host cell invasion.


Subject(s)
COP-Coated Vesicles/metabolism , Epithelial Cells/microbiology , Host-Pathogen Interactions , Lysosomes/metabolism , R-SNARE Proteins/metabolism , Salmonella typhimurium/physiology , Vacuoles/microbiology , Epithelial Cells/physiology , HeLa Cells , Humans , Salmonella typhimurium/growth & development , Vacuoles/chemistry
3.
Mol Microbiol ; 89(6): 1053-68, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23859254

ABSTRACT

Bacillus subtilis sporulation depends on the forespore membrane protein SpoIIQ, which interacts with the mother cell protein SpoIIIAH at the septum to localize other sporulation proteins. It has remained unclear how SpoIIQ localizes. We demonstrate that localization of SpoIIQ is achieved by two pathways: SpoIIIAH and the SpoIID, SpoIIM, SpoIIP engulfment proteins. SpoIIQ shows diffuse localization only in a mutant lacking both pathways. Super-resolution imaging shows that in the absence of SpoIIIAH, SpoIIQ forms fewer, slightly larger foci than in wild type. Surprisingly, photobleaching experiments demonstrate that, although SpoIIQ localizes without SpoIIIAH, it is no longer immobilized, and is therefore able to exchange subunits within a localized pool. SpoIIQ mobility is further increased by the additional absence of the engulfment proteins. However an enzymatically inactive SpoIID protein immobilizes SpoIIQ even in the absence of SpoIIIAH, indicating that complete septal thinning is not required for SpoIIQ localization. This suggests that SpoIIQ interacts with both SpoIIIAH and the engulfment proteins or their peptidoglycan cleavage products. They further demonstrate that apparently normal localization of a protein without a binding partner can mask dramatic alterations in protein mobility. We speculate that SpoIIQ assembles foci along the path defined by engulfment proteins degrading peptidoglycan.


Subject(s)
Bacillus subtilis/metabolism , Bacterial Proteins/metabolism , Cell Wall/metabolism , Spores, Bacterial/metabolism , Bacillus subtilis/growth & development , Protein Binding , Protein Transport , Spores, Bacterial/growth & development
4.
Mol Microbiol ; 88(4): 673-86, 2013 May.
Article in English | MEDLINE | ID: mdl-23531131

ABSTRACT

While vegetative Bacillus subtilis cells and mature spores are both surrounded by a thick layer of peptidoglycan (PG, a polymer of glycan strands cross-linked by peptide bridges), it has remained unclear whether PG surrounds prespores during engulfment. To clarify this issue, we generated a slender ΔponA mutant that enabled high-resolution electron cryotomographic imaging. Three-dimensional reconstructions of whole cells in near-native states revealed a thin PG-like layer extending from the lateral cell wall around the prespore throughout engulfment. Cryotomography of purified sacculi and fluorescent labelling of PG in live cells confirmed that PG surrounds the prespore. The presence of PG throughout engulfment suggests new roles for PG in sporulation, including a new model for how PG synthesis might drive engulfment, and obviates the need to synthesize a PG layer de novo during cortex formation. In addition, it reveals that B. subtilis can synthesize thin, Gram-negative-like PG layers as well as its thick, archetypal Gram-positive cell wall. The continuous transformations from thick to thin and back to thick during sporulation suggest that both forms of PG have the same basic architecture (circumferential). Endopeptidase activity may be the main switch that governs whether a thin or a thick PG layer is assembled.


Subject(s)
Bacillus subtilis/growth & development , Bacillus subtilis/ultrastructure , Peptidoglycan/metabolism , Peptidoglycan/ultrastructure , Spores, Bacterial/growth & development , Spores, Bacterial/ultrastructure , Cryoelectron Microscopy , Electron Microscope Tomography
5.
Vet Res ; 45: 81, 2014 Aug 30.
Article in English | MEDLINE | ID: mdl-25175996

ABSTRACT

Salmonella Gallinarum and Salmonella Enteritidis are genetically closely related however associated with different pathologies. Several studies have suggested that S. Gallinarum is less invasive in vitro than S. Enteritidis. In this study we confirm that the S. Gallinarum strains tested were much less invasive than the S. Enteritidis strains tested in cells of avian or human origin. In addition, the S. Gallinarum T3SS-1-dependent ability to invade host cells was delayed by two to three hours compared to S. Enteritidis, indicating that T3SS-1-dependent entry is less efficient in S. Gallinarum than S. Enteritidis. This was neither due to a decreased transcription of T3SS-1 related genes when bacteria come into contact with cells, as transcription of hilA, invF and sipA was similar to that observed for S. Enteritidis, nor to a lack of functionality of the S. Gallinarum T3SS-1 apparatus as this apparatus was able to secrete and translocate effector proteins into host cells. In contrast, genome comparison of four S. Gallinarum and two S. Enteritidis strains revealed that all S. Gallinarum genomes displayed the same point mutations in each of the main T3SS-1 effector genes sipA, sopE, sopE2, sopD and sopA.


Subject(s)
Poultry Diseases/microbiology , Salmonella Infections, Animal/microbiology , Salmonella Infections/microbiology , Salmonella enterica/physiology , Salmonella enterica/pathogenicity , Salmonella enteritidis/physiology , Salmonella enteritidis/pathogenicity , Animals , Bacterial Adhesion , Cell Line , Cell Line, Tumor , Chickens , Humans , Salmonella enterica/genetics , Salmonella enteritidis/genetics
6.
Methods Mol Biol ; 1535: 173-195, 2017.
Article in English | MEDLINE | ID: mdl-27914079

ABSTRACT

Listeria monocytogenes is a bacterial pathogen which invades and multiplies within non-professional phagocytes. Signaling cascades involved in cellular entry have been extensively analyzed, but the events leading to vacuolar escape remain less clear. In this chapter, we detail a microscopy FRET-based assay which allows quantitatively measuring L. monocytogenes infection and escape from its internalization vacuole, as well as a correlative light/electron microscopy method to investigate the morphological features of the vacuolar compartments containing L. monocytogenes.


Subject(s)
Fluorescence Resonance Energy Transfer/methods , Listeria monocytogenes/metabolism , Listeria monocytogenes/ultrastructure , Microscopy, Electron/methods , Microscopy, Fluorescence/methods , Vacuoles/metabolism , Biological Transport , Vacuoles/ultrastructure
7.
Cell Host Microbe ; 18(5): 527-37, 2015 Nov 11.
Article in English | MEDLINE | ID: mdl-26567507

ABSTRACT

Salmonella Typhimurium (S.Tm) is an enteropathogen requiring multiple virulence factors, including two type three secretion systems (T1 and T2). T1 triggers epithelium invasion in which the bacteria are taken up into endosomes that mature into Salmonella-containing vacuoles (SCV) and trigger T2 induction upon acidification. Mechanisms controlling endosome membrane integrity or pathogen egress into the cytosol are incompletely understood. We screened for host factors affecting invasion and SCV maturation and identified a role for autophagy in sealing endosomal membranes damaged by T1 during host cell invasion. S.Tm-infected autophagy-deficient (atg5(-/-)) cells exhibit reduced SCV dye retention and lower T2 expression but no effects on steps preceding SCV maturation. However, in the absence of T1, autophagy is dispensable for T2 induction. These findings establish a role of autophagy at early stages of S.Tm infection and suggest that autophagy-mediated membrane repair might be generally important for invasive pathogens and endosomal membrane function.


Subject(s)
Endosomes/pathology , Membranes/pathology , Salmonella Infections/microbiology , Salmonella typhimurium/pathogenicity , Type III Secretion Systems , Virulence Factors/metabolism , Animals , Autophagy , Cell Line , Humans , Mice , Salmonella Infections/pathology , Salmonella typhimurium/metabolism
8.
Trends Microbiol ; 22(3): 128-37, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24530174

ABSTRACT

Entry into host cells is a strategy widely used by bacterial pathogens, after which they either remain within membrane-bound compartments or rupture the endocytic vacuole to reach the cytoplasm. During recent years, cytoplasmic access has been documented for an increasing number of pathogens. Here we review how classical cytoplasmic bacterial pathogens rupture their endocytic vacuoles as well as the mechanisms used to accomplish this task by bacterial species for which host cytoplasmic localization has only recently been identified. We also discuss the consequences for pathogenesis resulting from this change in intracellular localization, with a particular focus on the role of the host. What emerges is that cytoplasmic access plays an important role in the pathophysiology of an increasing number of intracellular bacterial pathogens.


Subject(s)
Bacterial Physiological Phenomena , Cytoplasm/microbiology , Endocytosis , Host-Pathogen Interactions , Animals , Humans , Models, Biological
9.
PLoS One ; 9(7): e99820, 2014.
Article in English | MEDLINE | ID: mdl-25007190

ABSTRACT

We constructed two collections of targeted single gene deletion (SGD) mutants and two collections of targeted multi-gene deletion (MGD) mutants in Salmonella enterica sv Typhimurium 14028s. The SGD mutant collections contain (1), 3517 mutants in which a single gene is replaced by a cassette containing a kanamycin resistance (KanR) gene oriented in the sense direction (SGD-K), and (2), 3376 mutants with a chloramphenicol resistance gene (CamR) oriented in the antisense direction (SGD-C). A combined total of 3773 individual genes were deleted across these SGD collections. The MGD collections contain mutants bearing deletions of contiguous regions of three or more genes and include (3), 198 mutants spanning 2543 genes replaced by a KanR cassette (MGD-K), and (4), 251 mutants spanning 2799 genes replaced by a CamR cassette (MGD-C). Overall, 3476 genes were deleted in at least one MGD collection. The collections with different antibiotic markers permit construction of all viable combinations of mutants in the same background. Together, the libraries allow hierarchical screening of MGDs for different phenotypic followed by screening of SGDs within the target MGD regions. The mutants of these collections are stored at BEI Resources (www.beiresources.org) and publicly available.


Subject(s)
Gene Deletion , Mutagenesis, Site-Directed , Salmonella typhimurium/genetics , Chloramphenicol Resistance , Gene Library , Genes, Bacterial , Kanamycin Resistance , Mutation , Sequence Deletion
10.
J Physiol ; 562(Pt 3): 873-84, 2005 Feb 01.
Article in English | MEDLINE | ID: mdl-15611027

ABSTRACT

We studied the relative contributions of Ca(2+) binding to troponin C (TnC) and myosin binding to actin in activating thin filaments of rabbit psoas fibres. The ability of Ca(2+) to activate thin filaments was reduced by replacing native TnC with cardiac TnC (cTnC) or a site I-inactive skeletal TnC mutant (xsTnC). Acto-myosin (crossbridge) interaction was either inhibited using N-benzyl-p-toluene sulphonamide (BTS) or enhanced by lowering [ATP] from 5.0 to 0.5 mm. Reconstitution with cTnC reduced maximal force (F(max)) by approximately 1/3 and the Ca(2+) sensitivity of force (pCa(50)) by 0.17 unit (P < 0.001), while reconstitution with xsTnC reduced F(max) by approximately 2/3 and pCa(50) by 0.19 unit (P < 0.001). In both cases the apparent cooperativity of activation (n(H)) was greatly decreased. In control fibres 3 mum BTS inhibited force to 57% of F(max) while in fibres reconstituted with cTnC or xsTnC, reconstituted maximal force (rF(max)) was inhibited to 8.8% and 14.3%, respectively. Under control conditions 3 mum BTS significantly decreased the pCa(50), but this effect was considerably reduced in cTnC reconstituted fibres, and eliminated in xsTnC reconstituted fibres. In contrast, when crossbridge cycle kinetics were slowed by lowering [ATP] from 5 to 0.5 mm in xsTnC reconstituted fibres, pCa(50) and n(H) were increased towards control values. Combined, our results demonstrate that when the ability of Ca(2+) binding to activate thin filaments is compromised, the relative contribution of strong crossbridges to maintain thin filament activation is increased. Furthermore, the data suggest that at low levels of Ca(2+), the level of thin filament activation is determined primarily by the direct effects of Ca(2+) on tropomyosin mobility, while at higher levels of Ca(2+) the final level of thin filament activation is primarily determined by strong cycling crossbridges.


Subject(s)
Actins/metabolism , Calcium/metabolism , Muscle Contraction/physiology , Muscle Fibers, Skeletal/physiology , Muscle, Skeletal/physiology , Myocardium/metabolism , Myosins/metabolism , Troponin C/metabolism , Animals , Binding Sites , Cells, Cultured , Mutagenesis, Site-Directed , Protein Binding , Rabbits , Recombinant Proteins/metabolism , Stress, Mechanical
SELECTION OF CITATIONS
SEARCH DETAIL