Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
1.
J Magn Reson Imaging ; 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38963154

ABSTRACT

BACKGROUND: Lower back pain affects 75%-85% of people at some point in their lives. The detection of biochemical changes with sodium (23Na) MRI has potential to enable an earlier and more accurate diagnosis. PURPOSE: To measure 23Na relaxation times and apparent tissue sodium concentration (aTSC) in ex-vivo intervertebral discs (IVDs), and to investigate the relationship between aTSC and histological Thompson grade. STUDY TYPE: Ex-vivo. SPECIMEN: Thirty IVDs from the lumbar spines of 11 human body donors (4 female, 7 male, mean age 86 ± 8 years). FIELD STRENGTH/SEQUENCE: 3 T; density-adapted 3D radial sequence (DA-3D-RAD). ASSESSMENT: IVD 23Na longitudinal (T1), short and long transverse (T2s* and T2l*) relaxation times and the proportion of the short transverse relaxation (ps) were calculated for one IVD per spine sample (11 IVDs). Furthermore, aTSCs were calculated for all IVDs. The degradation of the IVDs was assessed via histological Thompson grading. STATISTICAL TESTS: A Kendall Tau correlation (τ) test was performed between the aTSCs and the Thompson grades. The significance level was set to P < 0.05. RESULTS: Mean 23Na relaxation parameters of a subset of 11 IVDs were T1 = 9.8 ± 1.3 msec, T2s* = 0.7 ± 0.1 msec, T2l* = 7.3 ± 1.1 msec, and ps = 32.7 ± 4.0%. A total of 30 IVDs were examined, of which 3 had Thompson grade 1, 4 had grade 2, 5 had grade 3, 5 had grade 4, and 13 had grade 5. The aTSC decreased with increasing degradation, being 274.6 ± 18.9 mM for Thompson grade 1 and 190.5 ± 29.5 mM for Thompson grade 5. The correlation between whole IVD aTSC and Thompson grade was significant and strongly negative (τ = -0.56). DATA CONCLUSION: This study showed a significant correlation between aTSC and degenerative IVD changes. Consequently, aTSC has potential to be useful as an indicator of degenerative spinal changes. EVIDENCE LEVEL: 2 TECHNICAL EFFICACY: Stage 1.

2.
Int J Mol Sci ; 23(18)2022 Sep 17.
Article in English | MEDLINE | ID: mdl-36142810

ABSTRACT

Sodium magnetic resonance imaging (MRI) can be used to evaluate the change in the proteoglycan content in Achilles tendons (ATs) of patients with different AT pathologies by measuring the 23Na signal-to-noise ratio (SNR). As 23Na SNR alone is difficult to compare between different studies, because of the high influence of hardware configurations and sequence settings on the SNR, we further set out to measure the apparent tissue sodium content (aTSC) in the AT as a better comparable parameter. Ten healthy controls and one patient with tendinopathy in the AT were examined using a clinical 3 Tesla (T) MRI scanner in conjunction with a dual tuned 1H/23Na surface coil to measure 23Na SNR and aTSC in their ATs. 23Na T1 and T2* of the AT were also measured for three controls to correct for different relaxation behavior. The results were as follows: 23Na SNR = 11.7 ± 2.2, aTSC = 82.2 ± 13.9 mM, 23Na T1 = 20.4 ± 2.4 ms, 23Na T2s* = 1.4 ± 0.4 ms, and 23Na T2l* = 13.9 ± 0.8 ms for the whole AT of healthy controls with significant regional differences. These are the first reported aTSCs and 23Na relaxation times for the AT using sodium MRI and may serve for future comparability in different studies regarding examinations of diseased ATs with sodium MRI.


Subject(s)
Achilles Tendon , Achilles Tendon/diagnostic imaging , Achilles Tendon/pathology , Humans , Magnetic Resonance Imaging/methods , Proteoglycans , Reproducibility of Results , Sodium
3.
Int J Mol Sci ; 23(13)2022 Jun 22.
Article in English | MEDLINE | ID: mdl-35805925

ABSTRACT

Based on in silico, in situ, and in vivo studies, this study aims to develop a new method for the quantitative chemical exchange saturation transfer (qCEST) technique considering multi-pool systems. To this end, we extended the state-of-the-art apparent exchange-dependent relaxation (AREX) method with a Lorentzian correction (LAREX). We then validated this new method with in situ and in vivo experiments on human intervertebral discs (IVDs) using the Kendall-Tau correlation coefficient. In the in silico experiments, we observed significant deviations of the AREX method as a function of the underlying exchange rate (kba) and fractional concentration (fb) compared to the ground truth due to the influence of other exchange pools. In comparison to AREX, the LAREX-based Ω-plot approach yielded a substantial improvement. In the subsequent in situ and in vivo experiments on human IVDs, no correlation to the histological reference standard or Pfirrmann classification could be found for the fb (in situ: τ = −0.17 p = 0.51; in vivo: τ = 0.13 p = 0.30) and kba (in situ: τ = 0.042 p = 0.87; in vivo: τ = −0.26 p = 0.04) of Glycosaminoglycan (GAG) with AREX. In contrast, the influence of interfering pools could be corrected by LAREX, and a moderate to strong correlation was observed for the fractional concentration of GAG for both in situ (τ = −0.71 p = 0.005) and in vivo (τ = −0.49 p < 0.001) experiments. The study presented here is the first to introduce a new qCEST method that enables qCEST imaging in systems with multiple proton pools.


Subject(s)
Intervertebral Disc , Magnetic Resonance Imaging , Glycosaminoglycans , Humans , Magnetic Resonance Imaging/methods , Protons
4.
MAGMA ; 34(2): 249-260, 2021 Apr.
Article in English | MEDLINE | ID: mdl-32725359

ABSTRACT

OBJECTIVE: To establish and optimize a stable 3 Tesla (T) glycosaminoglycan chemical exchange saturation transfer (gagCEST) imaging protocol for assessing the articular cartilage of the tibiotalar joint in healthy volunteers and patients after a sustained injury to the ankle. METHODS: Using Bloch-McConnell simulations, we optimized the sequence protocol for a 3 T MRI scanner for maximum gagCEST effect size within a clinically feasible time frame of less than 07:30 min. This protocol was then used to analyze the gagCEST effect of the articular cartilage of the tibiotalar joint of 17 healthy volunteers and five patients with osteochondral lesions of the talus following ankle trauma. Reproducibility was tested with the intraclass correlation coefficient. RESULTS: The mean magnetization transfer ratio asymmetry (MTRasym), i.e., the gagCEST effect size, was significantly lower in patients than in healthy volunteers (0.34 ± 1.9% vs. 1.49 ± 0.11%; p < 0.001 [linear mixed model]). Intra- and inter-rater reproducibility was excellent with an average measure intraclass correlation coefficient (ICC) of 0.97 and a single measure ICC of 0.91 (p < 0.01). DISCUSSION: In this feasibility study, pre-morphological tibiotalar joint cartilage damage was quantitatively assessable on the basis of the optimized 3 T gagCEST imaging protocol that allowed stable quantification gagCEST effect sizes across a wide range of health and disease in clinically feasible acquisition times.


Subject(s)
Cartilage, Articular , Feasibility Studies , Glycosaminoglycans , Humans , Magnetic Resonance Imaging , Reproducibility of Results
5.
Acta Radiol ; 62(7): 875-881, 2021 Jul.
Article in English | MEDLINE | ID: mdl-32727212

ABSTRACT

BACKGROUND: Motion correction is mandatory for the functional Fourier decomposition magnetic resonance imaging (FD-MRI) of the lungs. Therefore, it is important to evaluate the quality of various image-registration algorithms for pulmonary FD-MRI and to determine their impact on FD-MRI outcome. PURPOSE: To evaluate different image-registration algorithms for FD-MRI in functional lung imaging. MATERIAL AND METHODS: Fifteen healthy volunteers were examined in a 1.5-T whole-body MR scanner (Magnetom Avanto, Siemens AG) with a non-contrast enhanced 2D TrueFISP pulse sequence in coronal view and free-breathing (acquisition time 45 s, 250 images). Three image-registration algorithms were used to compensate the spatial variation of the lungs (fMRLung 3.0, ANTs, and Elastix). Quality control for image registration was performed by edge detection (ED), quotient image criterion (QI), and dice similarity coefficient (DSC). Ventilation, perfusion, and a ventilation/perfusion quotient (V/Q) were calculated using the three registered datasets. RESULTS: Average computing times for the three image-registration algorithms were 1.0 ± 1.6 min, 38.0 ± 13.5 min, and 354 ± 78 min for fMRLung, ANTs, and Elastix, respectively. No significant difference in the quality of motion correction provided by different image-registration algorithms occurred. Significant differences were observed between fMRLung- and Elastix-based perfusion values ​​of the left lung as well as fMRLung- and ANTs-based V/Q quotient of the right and the entire lung (P < 0.05). Other ventilation and perfusion values were not significantly different. CONCLUSION: The mandatory motion correction for functional FD-MRI of the lung can be achieved through different image-registration algorithms with consistent quality. However, a significantly difference in computing time between the image-registration algorithms still requires an optimization.


Subject(s)
Algorithms , Fourier Analysis , Image Processing, Computer-Assisted , Lung/diagnostic imaging , Lung/physiology , Magnetic Resonance Imaging , Adult , Female , Humans , Male , Pulmonary Circulation/physiology , Pulmonary Ventilation/physiology , Reference Values , Reproducibility of Results , Ventilation-Perfusion Ratio/physiology
6.
Magn Reson Med ; 84(3): 1518-1525, 2020 09.
Article in English | MEDLINE | ID: mdl-32072674

ABSTRACT

PURPOSE: To evaluate the sensitivity of stimulated-echo acquisition mode (STEAM) and pulsed-gradient spin-echo (PGSE) diffusion tensor imaging (DTI) acquisitions with different diffusion times for measuring renal tissue anisotropy. METHODS: Twelve healthy volunteers underwent an MRI examination at a 3T scanner including STEAM and PGSE DTI with variable diffusion times Δ (20.3, 37 and 125 ms). Three volunteers were scanned twice to test the reproducibility for repeated examinations. Diffusion parameters fractional anisotropy (FA) and apparent diffusion coefficient (ADC) in the automatically segmented cortical and medullary regions of interests in both kidneys were calculated and averaged over all subjects for further analysis. Moreover, 5-grade qualitative evaluation of the FA and ADC maps from each sequence was conducted by two experienced radiologists in a consensus. RESULTS: The cortex-medulla difference in the STEAM sequence was significantly higher than that in PGSE with short ∆ = 20.3 ms (P < 0.001) and in PGSE with intermediate ∆ = 37 ms (P < 0.05) diffusion times. Reproducibility of the FA/ADC measurements was very good and comparable for all acquisition modes investigated. For the FA maps, the PGSE sequence with intermediate diffusion time scored highest in the subjective visual assessment of radiologists. CONCLUSION: The delineation of anisotropy in renal tissue is depending on the used diffusion time of the DTI sequence. A PGSE acquisition at a diffusion time of about 37 ms provides reproducible results with optimal corticomedullary contrast in FA and ADC maps and good image quality.


Subject(s)
Diffusion Tensor Imaging , Kidney , Anisotropy , Diffusion Magnetic Resonance Imaging , Humans , Kidney/diagnostic imaging , Reproducibility of Results
7.
J Hand Surg Am ; 45(7): 619-625, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32291096

ABSTRACT

PURPOSE: To assess radiocarpal articular cartilage after distal radius fracture, with and without intra-articular extension, compared with healthy controls using multiparametric, nonenhanced magnetic resonance imaging (MRI). METHODS: In this prospective study, multiparametric MRI of the radiocarpal articular cartilage was performed in 26 participants (16 males and 10 females; mean age, 39.5 ± 14.7 years; range, 20-70 years) using 3T MRI. The cohort consisted of 14 patients with a distal radius fracture and 12 healthy volunteers. The radiocarpal articular cartilage was assessed using morphological (Double Echo Steady-State [DESS] and True Fast Imaging With Steady-State Precession [TrueFISP]) and biochemical (T2∗) MRI sequences without an intravenous contrast agent. The modified Outerbridge classification system for morphological analyses and region-of-interest biochemical analysis were applied to assess the degree of articular cartilage damage in each patient. RESULTS: Morphological articular cartilage assessment showed no difference between the DESS sequence and the reference standard, TrueFISP. In the morphological (DESS and TrueFISP) and biochemical (T2∗) assessments, patients with intra-articular fractures did not show articular cartilage damage different from those with extra-articular fractures. Greater articular cartilage degradation was observed after distal radius fracture compared with controls. CONCLUSIONS: Posttraumatic radiocarpal articular cartilage damage did not differ between fractures with intra-articular and extra-articular extension, but patients with fractures had notably higher articular cartilage degradation compared with healthy controls. Magnetic resonance imaging using advanced multiparametric sequences may facilitate accurate, noninvasive assessment of articular cartilage changes after distal radius fracture without the need for a contrast agent. TYPE OF STUDY/LEVEL OF EVIDENCE: Diagnostic IV.


Subject(s)
Cartilage, Articular , Radius Fractures , Adult , Cartilage, Articular/diagnostic imaging , Contrast Media , Female , Humans , Magnetic Resonance Imaging , Male , Middle Aged , Prospective Studies , Radius Fractures/diagnostic imaging , Young Adult
8.
Ear Hear ; 39(3): 503-516, 2018.
Article in English | MEDLINE | ID: mdl-29068860

ABSTRACT

OBJECTIVES: Watching a talker's mouth is beneficial for speech reception (SR) in many communication settings, especially in noise and when hearing is impaired. Measures for audiovisual (AV) SR can be valuable in the framework of diagnosing or treating hearing disorders. This study addresses the lack of standardized methods in many languages for assessing lipreading, AV gain, and integration. A new method is validated that supplements a German speech audiometric test with visualizations of the synthetic articulation of an avatar that was used, for it is feasible to lip-sync auditory speech in a highly standardized way. Three hypotheses were formed according to the literature on AV SR that used live or filmed talkers. It was tested whether respective effects could be reproduced with synthetic articulation: (1) cochlear implant (CI) users have a higher visual-only SR than normal-hearing (NH) individuals, and younger individuals obtain higher lipreading scores than older persons. (2) Both CI and NH gain from presenting AV over unimodal (auditory or visual) sentences in noise. (3) Both CI and NH listeners efficiently integrate complementary auditory and visual speech features. DESIGN: In a controlled, cross-sectional study with 14 experienced CI users (mean age 47.4) and 14 NH individuals (mean age 46.3, similar broad age distribution), lipreading, AV gain, and integration of a German matrix sentence test were assessed. Visual speech stimuli were synthesized by the articulation of the Talking Head system "MASSY" (Modular Audiovisual Speech Synthesizer), which displayed standardized articulation with respect to the visibility of German phones. RESULTS: In line with the hypotheses and previous literature, CI users had a higher mean visual-only SR than NH individuals (CI, 38%; NH, 12%; p < 0.001). Age was correlated with lipreading such that within each group, younger individuals obtained higher visual-only scores than older persons (rCI = -0.54; p = 0.046; rNH = -0.78; p < 0.001). Both CI and NH benefitted by AV over unimodal speech as indexed by calculations of the measures visual enhancement and auditory enhancement (each p < 0.001). Both groups efficiently integrated complementary auditory and visual speech features as indexed by calculations of the measure integration enhancement (each p < 0.005). CONCLUSIONS: Given the good agreement between results from literature and the outcome of supplementing an existing validated auditory test with synthetic visual cues, the introduced method can be considered an interesting candidate for clinical and scientific applications to assess measures important for AV SR in a standardized manner. This could be beneficial for optimizing the diagnosis and treatment of individual listening and communication disorders, such as cochlear implantation.


Subject(s)
Cochlear Implants , Lipreading , Speech Intelligibility , Speech Perception , Visual Perception , Acoustic Stimulation , Adult , Cross-Sectional Studies , Humans , Middle Aged
9.
Quant Imaging Med Surg ; 13(11): 7467-7483, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37969627

ABSTRACT

Background: The field of orthopedics seeks effective, safer methods for evaluating articular cartilage regeneration. Despite various treatment innovations, non-invasive, contrast-free full quantitative assessments of hyaline articular cartilage's regenerative potential using compositional magnetic resonance (MR) sequences remain challenging. In this context, our aim was to investigate the effectiveness of different MR sequences for quantitative assessment of cartilage and to compare them with the current gold standard delayed gadolinium-enhanced MR imaging of cartilage (dGEMRIC) measurements. Methods: We employed ex vivo imaging in a preclinical minipig model to assess knee cartilage regeneration. Standardized osteochondral defects were drilled in the proximal femur of the specimens (n=14), which were divided into four groups. Porcine collagen scaffolds seeded with autologous adipose-derived stromal cells (ASC), autologous bone marrow stromal cells (BMSC), and unseeded scaffolds (US) were implanted in femoral defects. Furthermore, there was a defect group which received no treatment. After 6 months, the specimens were examined using different compositional MR methods, including the gold standard dGEMRIC as well as T1, T2, T2*, and T1ρ techniques. The statistical evaluation involved comparing the defect region with the uninjured tibia and femur cartilage layers and all measurements were performed on a clinical 3T MR Scanner. Results: In the untreated defect group, we observed significant differences in the defect region, with dGEMRIC values significantly lower (404.86±64.2 ms, P=0.018) and T2 times significantly higher (44.24±2.75 ms, P<0.001). Contrastingly, in all three treatment groups (ASC, BMSC, US), there were no significant differences among the three regions in the dGEMRIC sequence, suggesting successful cartilage regeneration. However, T1, T2*, and T1ρ sequences failed to detect such differences, highlighting their lower sensitivity for cartilage regeneration. Conclusions: As expected, dGEMRIC is well suited for monitoring cartilage regeneration. Interestingly, T2 imaging also proved to be a reliable cartilage imaging technique and thus offers a contrast agent-free alternative to the former gold standard for subsequent in vivo studies investigating the cartilage regeneration potential of different treatment modalities.

10.
Diagnostics (Basel) ; 13(10)2023 May 16.
Article in English | MEDLINE | ID: mdl-37238230

ABSTRACT

(1) Background: We aim to investigate age-related changes in cartilage structure and composition in the metacarpophalangeal (MCP) joints using magnetic resonance (MR) biomarkers. (2) Methods: The cartilage tissue of 90 MCP joints from 30 volunteers without any signs of destruction or inflammation was examined using T1, T2, and T1ρ compositional MR imaging techniques on a 3 Tesla clinical scanner and correlated with age. (3) Results: The T1ρ and T2 relaxation times showed a significant correlation with age (T1ρ: Kendall-τ-b = 0.3, p < 0.001; T2: Kendall-τ-b = 0.2, p = 0.01). No significant correlation was observed for T1 as a function of age (T1: Kendall-τ-b = 0.12, p = 0.13). (4) Conclusions: Our data show an increase in T1ρ and T2 relaxation times with age. We hypothesize that this increase is due to age-related changes in cartilage structure and composition. In future examinations of cartilage using compositional MRI, especially T1ρ and T2 techniques, e.g., in patients with osteoarthritis or rheumatoid arthritis, the age of the patients should be taken into account.

11.
J Clin Med ; 12(6)2023 Mar 16.
Article in English | MEDLINE | ID: mdl-36983306

ABSTRACT

Low levels of delayed gadolinium-enhanced magnetic resonance imaging of cartilage (dGEMRIC) values are indicative of cartilage degeneration. Patients with early rheumatoid arthritis are known to have low dGEMRIC values due to inflammatory activity. The additional effect of biological disease-modifying antirheumatic drug (bDMARD) and conventional synthetic disease-modifying antirheumatic drug (csDMARD) treatment on cartilage status is still unclear. In this prospective, double-blinded, randomized proof-of-concept clinical trial, patients with early rheumatoid arthritis (disease duration less than 12 months from symptoms onset) were treated with methotrexate + adalimumab (10 patients: 6/4 (f/m)). A control group with methotrexate alone (four patients: 2/2 (f/m)) was used. Cartilage integrity in the metacarpophalangeal joints was compared using dGEMRIC at baseline, 12, and 24 weeks after treatment initiation. A statistically significant increase in dGEMRIC levels was found in the adalimumab group considering the results after 12 and 24 weeks of therapy (p < 0.05) but not in the control group (p: non-significant). After 24 weeks, a tendency towards increased dGEMRIC values under combination therapy was observed, whereas methotrexate alone showed a slight decrease without meeting the criteria of significance (dGEMRIC mean change: +85.8 ms [-156.2-+346.5 ms] vs. 30.75 ms [-273.0-+131.0 ms]; p: non-significant). After 24 weeks of treatment with a combination of methotrexate and adalimumab, a trend indicating improvement in cartilage composition is seen in patients with early rheumatoid arthritis. However, treatment with methotrexate alone showed no change in cartilage composition, as observed in dGEMRIC sequences of metacarpophalangeal joints.

12.
Obes Surg ; 32(10): 3340-3350, 2022 10.
Article in English | MEDLINE | ID: mdl-35939221

ABSTRACT

PURPOSE: This study investigates the long-term effects of biliopancreatic diversion with duodenal switch (BPD-DS) on patients with advanced type 2 diabetes mellitus (T2DM) while paying special attention to preoperative diabetes severity. MATERIALS AND METHODS: A retrospective analysis was conducted using prospective and current data on patients who underwent an open BPD-DS 6-12 years ago. Patients were stratified according to preoperative diabetes severity into 4 groups (group 1: oral antidiabetic drugs only; group 2: insulin < 5 years; group 3: insulin 5-10 years; group 4: insulin > 10 years). The primary endpoint was T2DM remission rate 6-12 years after BPD-DS as a function of preoperative diabetes severity. RESULTS: Ninety-one patients with advanced T2DM were included. Sixty-two patients were available for follow-up (rate of 77%). Follow-up was performed (mean ± SD) 8.9 ± 1.3 years after surgery. Glycated hemoglobin (HbA1c) levels were 9.4 ± 2.0% before surgery and decreased to 5.1 ± 0.8% after 1 year and 5.4 ± 1.0% after 6-12 years. Insulin discontinuation rate after surgery as well as the rate of long-term remission decreased steadily from groups 1 to 4, while long-term mortality increased. T2DM remission rates were 93%, 88%, 45%, and 40% in groups 1, 2, 3, and 4, respectively. Late relapse of T2DM occurred in 3 patients (5%). CONCLUSIONS: BPD-DS causes a rapid and long-lasting normalization of glycemic metabolism in patients with advanced T2DM. T2DM remission rate after 6-12 years varies significantly (from 40% to more than 90%) and is highly dependent on preoperative diabetes severity.


Subject(s)
Biliopancreatic Diversion , Diabetes Mellitus, Type 2 , Obesity, Morbid , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/surgery , Duodenum/metabolism , Duodenum/surgery , Glycated Hemoglobin/metabolism , Humans , Hypoglycemic Agents/therapeutic use , Insulin , Obesity, Morbid/surgery , Prospective Studies , Retrospective Studies , Weight Loss
13.
Diagnostics (Basel) ; 12(2)2022 Feb 11.
Article in English | MEDLINE | ID: mdl-35204555

ABSTRACT

Currently, clinical indications for the application of gadolinium-based contrast agents (GBCA) in magnetic resonance imaging (MRI) are increasingly being questioned. Consequently, this study aimed to evaluate the additional diagnostic value of contrast enhancement in MRI of the hand in patients with rheumatoid arthritis (RA). Thirty-one patients with RA (mean age, 50 ± 14 years (range, 18-72 years)) underwent morphologic MRI scans on a clinical 3 T scanner. MRI studies were analyzed based on (1) the Rheumatoid Arthritis Magnetic Resonance Imaging Score (RAMRIS) and (2) the GBCA-free RAMRIS version, termed RAMRIS Sine-Gadolinium-For-Experts (RAMRIS-SAFE), in which synovitis and tenosynovitis were assessed using the short-tau inversion-recovery sequence instead of the post-contrast T1-weighted sequence. The synovitis subscores in terms of Spearman's ρ, as based on RAMRIS and RAMRIS-SAFE, were almost perfect (ρ = 0.937; p < 0.001), while the tenosynovitis subscores were less strongly correlated (ρ = 0.380 p = 0.035). Correlation between the total RAMRIS and RAMRIS-SAFE was also almost perfect (ρ = 0.976; p < 0.001). Inter-rater reliability in terms of Cohen's κ was high (0.963 ≤ κ ≤ 0.925). In conclusion, RAMRIS-SAFE as the GBCA-free version of the well-established RAMRIS is a patient-friendly and resource-efficient alternative for assessing disease-related joint changes in RA. As patients with RA are subject to repetitive GBCA applications, non-contrast imaging protocols should be considered.

14.
Quant Imaging Med Surg ; 12(8): 4190-4201, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35919061

ABSTRACT

Background: Clinical-standard morphologic magnetic resonance imaging (MRI) is limited in the refined diagnosis of posterior cruciate ligament (PCL) injuries. Quantitative MRI sequences such as ultrashort echo-time (UTE)-T2* mapping or conventional T2* mapping have been theorized to quantify ligament (ultra-) structure and integrity beyond morphology. This study evaluates their diagnostic potential in identifying and differentiating partial and complete PCL injuries in a standardized graded injury model. Methods: Ten human cadaveric knee joint specimens were imaged on a clinical 3.0 T MRI scanner using morphologic, conventional T2* mapping, and UTE-T2* mapping sequences before and after standardized arthroscopic partial and complete PCL transection. Following manual segmentation, quantitative T2* and underlying texture features (i.e., energy, homogeneity, and variance) were analyzed for each specimen and PCL condition, both for the entire PCL and its subregions. For statistical analysis, Friedman's test followed by Dunn's multiple comparison test was used against the level of significance of P≤0.01. Results: For the entire PCL, T2* was significantly increased as a function of injury when acquired with the UTE-T2* sequence [entire PCL: 11.1±3.1 ms (intact); 10.9±4.6 ms (partial); 14.3±4.9 ms (complete); P<0.001], but not when acquired with the conventional T2* sequence [entire PCL: 10.0±3.2 ms (intact); 11.4±6.2 ms (partial); 15.5±7.8 ms (complete); P=0.046]. The PCL subregions and texture variables showed variable changes indicative of injury-associated disorganization. Conclusions: In contrast to the conventional T2* mapping, UTE-T2* mapping is more receptive in the detection of structural damage of the PCL and allows quantitative assessment of ligament (ultra-)structure and integrity that may help to improve diagnostic differentiation of distinct injury states. Once further substantiated beyond the in-situ setting, UTE-T2* mapping may refine diagnostic evaluation of PCL injuries and -possibly- monitor ligament healing, ageing, degeneration, and inflammation.

15.
Diagnostics (Basel) ; 13(1)2022 Dec 29.
Article in English | MEDLINE | ID: mdl-36611395

ABSTRACT

In recent years, much research evaluating the radiographic destruction of finger joints in patients with rheumatoid arthritis (RA) using deep learning models was conducted. Unfortunately, most previous models were not clinically applicable due to the small object regions as well as the close spatial relationship. In recent years, a new network structure called RetinaNets, in combination with the focal loss function, proved reliable for detecting even small objects. Therefore, the study aimed to increase the recognition performance to a clinically valuable level by proposing an innovative approach with adaptive changes in intersection over union (IoU) values during training of Retina Networks using the focal loss error function. To this end, the erosion score was determined using the Sharp van der Heijde (SvH) metric on 300 conventional radiographs from 119 patients with RA. Subsequently, a standard RetinaNet with different IoU values as well as adaptively modified IoU values were trained and compared in terms of accuracy, mean average accuracy (mAP), and IoU. With the proposed approach of adaptive IoU values during training, erosion detection accuracy could be improved to 94% and an mAP of 0.81 ± 0.18. In contrast Retina networks with static IoU values achieved only an accuracy of 80% and an mAP of 0.43 ± 0.24. Thus, adaptive adjustment of IoU values during training is a simple and effective method to increase the recognition accuracy of small objects such as finger and wrist joints.

16.
Tomography ; 8(3): 1277-1292, 2022 05 07.
Article in English | MEDLINE | ID: mdl-35645392

ABSTRACT

Based on in silico, in vitro, in situ, and in vivo evaluations, this study aims to establish and optimize the chemical exchange saturation transfer (CEST) imaging of lactate (Lactate-CEST­LATEST). To this end, we optimized LATEST sequences using Bloch−McConnell simulations for optimal detection of lactate with a clinical 3 T MRI scanner. The optimized sequences were used to image variable lactate concentrations in vitro (using phantom measurements), in situ (using nine human cadaveric lower leg specimens), and in vivo (using four healthy volunteers after exertional exercise) that were then statistically analyzed using the non-parametric Friedman test and Kendall Tau-b rank correlation. Within the simulated Bloch−McConnell equations framework, the magnetization transfer ratio asymmetry (MTRasym) value was quantified as 0.4% in the lactate-specific range of 0.5−1 ppm, both in vitro and in situ, and served as the imaging surrogate of the lactate level. In situ, significant differences (p < 0.001) and strong correlations (τ = 0.67) were observed between the MTRasym values and standardized intra-muscular lactate concentrations. In vivo, a temporary increase in the MTRasym values was detected after exertional exercise. In this bench-to-bedside comprehensive feasibility study, different lactate concentrations were detected using an optimized LATEST imaging protocol in vitro, in situ, and in vivo at 3 T, which prospectively paves the way towards non-invasive quantification and monitoring of lactate levels across a broad spectrum of diseases.


Subject(s)
Lactic Acid , Magnetic Resonance Imaging , Humans , Magnetic Resonance Imaging/methods , Phantoms, Imaging , Physical Phenomena , Protons
17.
Diagnostics (Basel) ; 11(2)2021 Jan 20.
Article in English | MEDLINE | ID: mdl-33498217

ABSTRACT

BACKGROUND: Even though cartilage loss is a known feature of psoriatic (PsA) and rheumatoid arthritis (RA), research is sparse on its role in the pathogenesis of PsA, its potential use for disease monitoring and for differentiation from RA. We therefore assessed the use of delayed gadolinium-enhanced magnetic resonance imaging of cartilage (dGEMRIC) to evaluate biochemical cartilage changes in metacarpophalangeal (MCP) and proximal interphalangeal (PIP) joints in PsA patients and compared these to RA patients. MATERIALS AND METHODS: A total of 17 patients with active PsA and 20 patients with active RA were evaluated by high-resolution 3 Tesla dGEMRIC using a dedicated 16-channel hand coil. Images were analyzed by two independent raters for dGEMRIC indices and joint space width (JSW) at MCP and PIP joint levels. RESULTS: No significant differences of dGEMRIC values could be found between both study populations (PsA 472.25 ms, RA 461.11 ms; p = 0.763). In all RA and most PsA patients, PIP joints showed significantly lower dGEMRIC indices than MCP joints (RA: D2: p = 0.009, D3: p = 0.008, D4: p = 0.002, D5: p = 0.002; PsA: D3: p = 0.001, D4: p = 0.004). Most joint spaces had similar widths in both disease entities and no significant differences were found. CONCLUSIONS: As evaluated by dGEMRIC, the molecular composition of the MCP and PIP joint cartilage of PsA patients is similar to that of RA patients, demonstrating the scientific and clinical feasibility of compositional magnetic resonance (MR) imaging in these disease entities. Patterns and severity of compositional cartilage degradation of the finger joints may therefore be assessed beyond mere morphology in PsA and RA patients.

18.
Diagnostics (Basel) ; 11(12)2021 Dec 08.
Article in English | MEDLINE | ID: mdl-34943538

ABSTRACT

Sodium MRI has the potential to depict cartilage health accurately, but synovial fluid can influence the estimation of sodium parameters of cartilage. Therefore, this study aimed to reduce the impact of synovial fluid to render the quantitative compositional analyses of cartilage tissue technically more robust. Two dedicated protocols were applied for determining sodium T1 and T2* relaxation times. For each protocol, data were acquired from 10 healthy volunteers and one patient with patellar cartilage damage. Data recorded with multiple repetition times for T1 measurement and multi-echo data acquired with an additional inversion recovery pulse for T2* measurement were analysed using biexponential models to differentiate longitudinal relaxation components of cartilage (T1,car) and synovial fluid (T1,syn), and short (T2s*) from long (T2l*) transversal relaxation components. Sodium relaxation times and concentration estimates in patellar cartilage were successfully determined: T1,car = 14.5 ± 0.7 ms; T1,syn = 37.9 ± 2.9 ms; c(T1-protocol) = 200 ± 48 mmol/L; T2s* = 0.4 ± 0.1 ms; T2l* = 12.6 ± 0.7 ms; c(T2*-protocol) = 215 ± 44 mmol/L for healthy volunteers. In conclusion, a robust determination of sodium relaxation times is possible at a clinical field strength of 3T to quantify sodium concentrations, which might be a valuable tool to determine cartilage health.

19.
Diagnostics (Basel) ; 11(6)2021 May 22.
Article in English | MEDLINE | ID: mdl-34067470

ABSTRACT

Lumbar intervertebral disc (IVD) degeneration is characterized by structural and compositional changes. This study aimed to assess the glycosaminoglycan (GAG) content of IVDs of patients with adolescent idiopathic scoliosis (AIS) and healthy controls using GAG chemical exchange saturation transfer (gagCEST) imaging. Ten AIS patients (mean age 18.3 ± 8.2 years) and 16 healthy controls (mean age 25.5 ± 1.7 years) were included. Clinical standard morphologic MR images (T1w-, T2w-, and STIR-sequences), to rule out further spinal disorders and assess IVD degeneration using the Pfirrmann score, and compositional gagCEST sequences were acquired on a 3T MRI. In AIS patients, the most distal scoliotic curve was determined on whole-spine conventional radiographs and morphological MRI and IVDs were divided as to whether they were affected by scoliotic deformity, i.e., proximal (affected, aIVDs) or distal (unaffected, uaIVDs) to the stable vertebra of the most distal scoliotic curve. Linear mixed models were used to compare mean gagCEST-values. Over all segments, AIS-patients' IVDs exhibited significantly lower gagCEST-values than the controls: 2.76 [2.32, 3.20]% (AIS), 3.51 [3.16, 3.86]% (Control); p = 0.005. Meanwhile, no significant differences were found for gagCEST values comparing aIVDs with uaIVDs. In conclusion, as a powerful diagnostic adjunct, gagCEST imaging may be prospectively applied to detect early compositional degenerative changes in patients suffering from AIS.

20.
Diagnostics (Basel) ; 11(6)2021 Jun 11.
Article in English | MEDLINE | ID: mdl-34208361

ABSTRACT

While morphologic magnetic resonance imaging (MRI) is the imaging modality of choice for the evaluation of ligamentous wrist injuries, it is merely static and incapable of diagnosing dynamic wrist instability. Based on real-time MRI and algorithm-based image post-processing in terms of convolutional neural networks (CNNs), this study aims to develop and validate an automatic technique to quantify wrist movement. A total of 56 bilateral wrists (28 healthy volunteers) were imaged during continuous and alternating maximum ulnar and radial abduction. Following CNN-based automatic segmentations of carpal bone contours, scapholunate and lunotriquetral gap widths were quantified based on dedicated algorithms and as a function of wrist position. Automatic segmentations were in excellent agreement with manual reference segmentations performed by two radiologists as indicated by Dice similarity coefficients of 0.96 ± 0.02 and consistent and unskewed Bland-Altman plots. Clinical applicability of the framework was assessed in a patient with diagnosed scapholunate ligament injury. Considerable increases in scapholunate gap widths across the range-of-motion were found. In conclusion, the combination of real-time wrist MRI and the present framework provides a powerful diagnostic tool for dynamic assessment of wrist function and, if confirmed in clinical trials, dynamic carpal instability that may elude static assessment using clinical-standard imaging modalities.

SELECTION OF CITATIONS
SEARCH DETAIL