Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Publication year range
1.
J Infect Dis ; 2024 May 23.
Article in English | MEDLINE | ID: mdl-38781449

ABSTRACT

OBJECTIVE: The fecal microbiota and metabolome are hypothesized to be altered before late-onset neonatal meningitis (LOM), in analogy to late-onset sepsis (LOS). The present study aimed to identify fecal microbiota composition and volatile metabolomics preceding LOM. METHODS: Cases and gestational age-matched controls were selected from a prospective, longitudinal preterm cohort study (born <30 weeks' gestation) at nine neonatal intensive care units. The microbial composition (16S rRNA sequencing) and volatile metabolome (gas chromatography-ion mobility spectrometry (GC-IMS) and GC-time-of-flight-mass spectrometry (GC-TOF-MS)), were analyzed in fecal samples 1-10 days pre-LOM. RESULTS: Of 1397 included infants, 21 were diagnosed with LOM (1.5%), and 19 with concomitant LOS (90%). Random Forest classification and MaAsLin2 analysis found similar microbiota features contribute to the discrimination of fecal pre-LOM samples versus controls. A Random Forest model based on six microbiota features accurately predicts LOM 1-3 days before diagnosis with an area under the curve (AUC) of 0.88 (n=147). Pattern recognition analysis by GC-IMS revealed an AUC of 0.70-0.76 (P<0.05) in the three days pre-LOM (n=92). No single discriminative metabolites were identified by GC-TOF-MS (n=66). CONCLUSION: Infants with LOM could be accurately discriminated from controls based on preclinical microbiota composition, while alterations in the volatile metabolome were moderately associated with preclinical LOM.

2.
Curr Opin Clin Nutr Metab Care ; 27(3): 297-303, 2024 05 01.
Article in English | MEDLINE | ID: mdl-38488112

ABSTRACT

PURPOSE OF REVIEW: Emerging evidence suggests that the gut microbiota and its metabolites regulate neurodevelopment and cognitive functioning via a bi-directional communication system known as the microbiota-gut-brain axis (MGBA). RECENT FINDINGS: The MGBA influences brain development and function via the hypothalamic-pituitary axis, the vagal nerve, immune signaling, bacterial production of neurotransmitters, and microbial metabolites like short-chain fatty acids, tryptophan derivatives, and bile acids. Animal studies show fetal neurodevelopment is mediated by maternal microbiota derivatives, immune activation, and diet. Furthermore, manipulation of the microbiota during critical windows of development, like antibiotic exposure and fecal microbiota transplantation, can affect cognitive functioning and behavior in mice. Evidence from human studies, particularly in preterm infants, also suggests that a disrupted gut microbiota colonization may negatively affect neurodevelopment. Early microbial signatures were linked to favorable and adverse neurodevelopmental outcomes. SUMMARY: The link between the gut microbiota and the brain is evident. Future studies, including experimental studies, larger participant cohort studies with longitudinal analyses of microbes, their metabolites, and neurotransmitters, and randomized controlled trials are warranted to further elucidate the mechanisms of the MGBA. Identification of early, predictive microbial markers could pave the way for the development of novel early microbiota-based intervention strategies, such as targeted probiotics, and vaginal or fecal microbiota transplantation, aimed at improving infant neurodevelopment.


Subject(s)
Infant, Premature , Microbiota , Mitoguazone , Animals , Female , Humans , Infant, Newborn , Mice , Brain/physiology , Mitoguazone/analogs & derivatives , Neurotransmitter Agents/metabolism
3.
Sensors (Basel) ; 24(10)2024 May 16.
Article in English | MEDLINE | ID: mdl-38794014

ABSTRACT

Early diagnosis and treatment of late-onset sepsis (LOS) is crucial for survival, but challenging. Intestinal microbiota and metabolome alterations precede the clinical onset of LOS, and the preterm gut is considered an important source of bacterial pathogens. Fecal volatile organic compounds (VOCs), formed by physiologic and pathophysiologic metabolic processes in the preterm gut, reflect a complex interplay between the human host, the environment, and microbiota. Disease-associated fecal VOCs can be detected with an array of devices with various potential for the development of a point-of-care test (POCT) for preclinical LOS detection. While characteristic VOCs for common LOS pathogens have been described, their VOC profiles often overlap with other pathogens due to similarities in metabolic pathways, hampering the construction of species-specific profiles. Clinical studies have, however, successfully discriminated LOS patients from healthy individuals using fecal VOC analysis with the highest predictive value for Gram-negative pathogens. This review discusses the current advancements in the development of a non-invasive fecal VOC-based POCT for early diagnosis of LOS, which may potentially provide opportunities for early intervention and targeted treatment and could improve clinical neonatal outcomes. Identification of confounding variables impacting VOC synthesis, selection of an optimal detection device, and development of standardized sampling protocols will allow for the development of a novel POCT in the near future.


Subject(s)
Early Diagnosis , Feces , Infant, Premature , Sepsis , Volatile Organic Compounds , Humans , Volatile Organic Compounds/analysis , Feces/microbiology , Feces/chemistry , Sepsis/diagnosis , Sepsis/microbiology , Infant, Newborn , Gastrointestinal Microbiome/physiology
SELECTION OF CITATIONS
SEARCH DETAIL