Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 530
Filter
1.
Chemistry ; 30(22): e202400100, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38385852

ABSTRACT

In this manuscript we evaluate the X-ray structure of five new pertechnetate derivatives of general formula [M(H2O)4(TcO4)2], M=Mg, Co, Ni, Cu, Zn (compounds 1-5) and one perrhenate compound Zn(H2O)4(ReO4)2 (6). In these complexes the metal center exhibits an octahedral coordination with the pertechnetate units as axial ligands. All compounds exhibit the formation of directional Tc⋅⋅⋅O Matere bonds (MaBs) that propagate the [M(H2O)4(TcO4)2], into 1D supramolecular polymers in the solid state. Such 1D polymers are linked, generating 2D layers, by combining additional MaBs and hydrogen bonds (HBs). Such concurrent motifs have been analyzed theoretically, suggesting the noncovalent σ-hole nature of the MaBs. The interaction energies range from weak (~ -2 kcal/mol) for the MaBs to strong (~ -30 kcal/mol) for the MaB+HB assemblies, where HB dominates. In case of M=Zn, the corresponding perrhenate Zn(H2O)4(ReO4)2 complex, has been also synthesized for comparison purposes, resulting in the formation of an isostructural X-ray structure, corroborating the structure-directing role of Matere bonds.

2.
Chemistry ; 30(8): e202303641, 2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38019113

ABSTRACT

H-selenite anions (HSeO3 - ) form in the solid unprecedented anionic supramolecular chains wherein single units are assembled via alternating short Se⋅⋅⋅O and H⋅⋅⋅O contacts. Crystallographic analyses and computational studies (the quantum theory of "atoms-in-molecules", QTAIM, and the noncovalent interaction plot, NCIPlot) consistently prove the attractive nature of these chalcogen bonds (ChBs) and hydrogen honds (HBs), the Janus-type character of HSeO3 - anions which act as both donors and acceptors of ChB and HB, and the possible stability of anion dimers in solution. The effectiveness of the ChBs herein described may lead to consider the HSeO3 - moiety as a new entry in the toolbox of crystal engineering based on ChB.

3.
Inorg Chem ; 63(5): 2821-2832, 2024 Feb 05.
Article in English | MEDLINE | ID: mdl-38259118

ABSTRACT

Four Pt(II)(N^N^N) compounds featuring DMSO coordination at the fourth position were synthesized. Ligands varied in terms of pyridyl central ring (hydrogen/chlorine substituent) and lateral rings (triazoles with CF3 substitution or tetrazoles). Coordination to pyridine yielded tetra-nitrogen coordinated Pt(II) complexes or Pt-functionalized polymers using commercial 4-pyridyl polyvinyl (PV) or dimethylaminopyridine. Luminescence behaviors exhibited remarkable environmental dependence. While some of the molecular compounds (tetrazole derivatives) in solid state displayed quenched luminescence, all the polymers exhibited 3MMLCT emission around 600 nm. Conversely, monomer emission was evident on poly(methyl methacrylate) or polystyrene matrices. DFT calculations were used to analyze the aggregation of the complexes both at the molecular level and coordinated to the PV polymer and their influence on the HOMO-LUMO gaps.

4.
Inorg Chem ; 63(20): 9221-9236, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38713512

ABSTRACT

The versatile coordination chemistry of (2Z,N'E)-N'-(4-oxothiazolidin-2-ylidene)picolinohydrazonamide (HAmDHotaz) facilitated the synthesis of new complexes with different silver(I) salts. This paper describes the synthesis and characterization, through elemental analysis and spectroscopic techniques (when solubility permits), of a series of compounds that illustrate the coordinative and structural diversity achievable with the HAmDHotaz ligand. Five silver clusters containing the [Ag8(AmDHotaz)4]4+ nucleus were structurally analyzed by single-crystal X-ray diffraction and were found to exhibit solvomorphism. The compositions of these are [Ag8(AmDHotaz)4(NO3)3(MeOH)(H2O)](NO3)·MeOH·7.5H2O (1), {[Ag8(AmDHotaz)4(NO3)3(H2O)2](NO3)·9.5(H2O)}n (2), {[Ag8(AmDHotaz)4(NO3)3(H2O)2](NO3)·11.5(H2O)}n (2a), {[Ag8(AmDHotaz)4(NO3)2(H2O)2](NO3)(OH)·6H2O}n (3), and {[Ag8(AmDHotaz)4(NO3)2(H2O)](NO3)(OH)·4.5H2O}n (3a). Argentophilic interactions are present in each of the octanuclear structures, where Ag···Ag distances range from 2.828(2) to 2.986(1) Å. These distances are influenced by crystal packing, determined by the counterion and solvent molecules in the structure. In the solvatomorphs, solvent molecules were observed to be disordered. Various hydrogen-bonding interactions, such as N-H···O-N, O-H···O, N-H···O═C, C-H···O-N, and π-π stacking interactions, contribute to the crystal packing. The influence of these weak interactions on the crystal packing was further analyzed using DFT calculations and Bader's theory of atoms-in-molecules, with a focus on argentophilic interactions and Ag···S interactions.

5.
Inorg Chem ; 63(1): 191-202, 2024 Jan 08.
Article in English | MEDLINE | ID: mdl-38108293

ABSTRACT

Cocrystallization of the dimeric [Cu2(µ-I)2(CNXyl)4] (Xyl = 2,6-Me2C6H3, 1) and polymeric catena-[Cu(µ-I)(CNC6H3-2-Cl-6-Me)2] (2) complexes with I2 at different molar ratios between the reactants resulted in a series of (RNC)2CuI-based crystal polyiodides formed along with gradual accumulation of iodine, namely the cocrystals [1·I2]·[Cu(µ1,1-I3)(CNXyl)2]2 followed by the generation of [Cu(µ1,3-I3)(CNXyl)2]2·2I2 (5·2I2) or [Cu(µ1,1-I3)(CNC6H3-2-Cl-6-Me)2]2 and then [Cu(µ1,3-I3)(CNC6H3-2-Cl-6-Me)2]n·n/2I2. The polyiodide 5·2I2 exhibits a novel supramolecular motif─a purely inorganic halogen-bonded Cu2(µ1,3-I3)2 core in the chair conformation. The X-ray structure of 5·2I2 featuring I···I contacts was analyzed by a set of theoretical methods and attributed to moderately strong halogen bonding (from -3.2 to -3.9 kcal/mol); these interactions determine the supramolecular architecture of 5·2I2.

6.
Europace ; 26(4)2024 Mar 30.
Article in English | MEDLINE | ID: mdl-38584423

ABSTRACT

Electrical storm (ES) is a state of electrical instability, manifesting as recurrent ventricular arrhythmias (VAs) over a short period of time (three or more episodes of sustained VA within 24 h, separated by at least 5 min, requiring termination by an intervention). The clinical presentation can vary, but ES is usually a cardiac emergency. Electrical storm mainly affects patients with structural or primary electrical heart disease, often with an implantable cardioverter-defibrillator (ICD). Management of ES requires a multi-faceted approach and the involvement of multi-disciplinary teams, but despite advanced treatment and often invasive procedures, it is associated with high morbidity and mortality. With an ageing population, longer survival of heart failure patients, and an increasing number of patients with ICD, the incidence of ES is expected to increase. This European Heart Rhythm Association clinical consensus statement focuses on pathophysiology, clinical presentation, diagnostic evaluation, and acute and long-term management of patients presenting with ES or clustered VA.


Subject(s)
Defibrillators, Implantable , Heart Failure , Tachycardia, Ventricular , Humans , Risk Factors , Arrhythmias, Cardiac/diagnosis , Arrhythmias, Cardiac/therapy , Incidence , Heart Failure/complications , Asia/epidemiology , Tachycardia, Ventricular/diagnosis , Tachycardia, Ventricular/therapy , Tachycardia, Ventricular/complications
7.
Phys Chem Chem Phys ; 26(23): 16550-16560, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38829286

ABSTRACT

Metallophilic interactions, specifically argentophilic (Ag⋯Ag) and aurophilic (Au⋯Au) interactions, play a crucial role in stabilizing various molecular and solid-state structures. In this manuscript, we present a convenient method to estimate the strength of argentophilic and aurophilic interactions based on quantum theory of atoms in molecules (QTAIM) parameters evaluated at the bond critical points connecting the metal centres. We employ density functional theory (DFT) calculations and the QTAIM parameters to develop this energy predictor. To validate the reliability and applicability of our method, we test it using a selection of X-ray crystal structures extracted from the cambridge structural database (CSD), where argentophilic and aurophilic interactions are known to be significant in their solid-state arrangements. This method offers a distinct advantage in systems where multiple interactions, beyond metallophilic interactions, contribute to the overall stability of the structure. By employing our approach, researchers can distinctly quantify the strength of argentophilic and aurophilic interactions, facilitating a deeper understanding of their impact on molecular and solid-state properties. This method fills a critical gap in the existing literature, offering a valuable tool to researchers seeking to unravel the intricate interactions in metal-containing compounds.

8.
Int J Mol Sci ; 25(12)2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38928142

ABSTRACT

In this study, Fe3O4 nanoparticles (FeNPs) decorated with halogenated perylene diimides (PDIs) have been used for capturing VOCs (volatile organic compounds) through noncovalent binding. Concretely, we have used tetrachlorinated/brominated PDIs as well as a nonhalogenated PDI as a reference system. On the other hand, methanol, ethanol, propanol, and butanol were used as VOCs. Experimental studies along with theoretical calculations (the BP86-D3/def2-TZVPP level of theory) pointed to two possible and likely competitive binding modes (lone pair-π through the π-acidic surface of the PDI and a halogen bond via the σ-holes at the Cl/Br atoms). More in detail, thermal desorption (TD) experiments showed an increase in the VOC retention capacity upon increasing the length of the alkyl chain, suggesting a preference for the interaction with the PDI aromatic surface. In addition, the tetrachlorinated derivative showed larger VOC retention times compared to the tetrabrominated analog. These results were complemented by several state-of-the-art computational tools, such as the electrostatic surface potential analysis, the Quantum Theory of Atoms in Molecules (QTAIM), as well as the noncovalent interaction plot (NCIplot) visual index, which were helpful to rationalize the role of each interaction in the VOC···PDI recognition phenomena.


Subject(s)
Alcohols , Alcohols/chemistry , Perylene/chemistry , Perylene/analogs & derivatives , Volatile Organic Compounds/chemistry , Halogens/chemistry , Magnetite Nanoparticles/chemistry , Quantum Theory
9.
Int J Mol Sci ; 25(4)2024 Feb 08.
Article in English | MEDLINE | ID: mdl-38396739

ABSTRACT

The cis- and trans-isomers of 6-(3-(3,4-dichlorophenyl)-1,2,4-oxadiazol-5-yl)cyclohex-3-ene-1-carboxylic acid (cis-A and trans-A) were obtained by the reaction of 3,4-dichloro-N'-hydroxybenzimidamide and cis-1,2,3,6-tetrahydrophthalic anhydride. Cocrystals of cis-A with appropriate solvents (cis-A‧½(1,2-DCE), cis-A‧½(1,2-DBE), and cis-A‧½C6H14) were grown from 1,2-dichloroethane (1,2-DCE), 1,2-dibromoethane (1,2-DBE), and a n-hexane/CHCl3 mixture and then characterized by X-ray crystallography. In their structures, cis-A is self-assembled to give a hybrid 2D supramolecular organic framework (SOF) formed by the cooperative action of O-H⋯O hydrogen bonding, Cl⋯O halogen bonding, and π⋯π stacking. The self-assembled cis-A divides the space between the 2D SOF layers into infinite hollow tunnels incorporating solvent molecules. The energy contribution of each noncovalent interaction to the occurrence of the 2D SOF was verified by several theoretical approaches, including MEP and combined QTAIM and NCIplot analyses. The consideration of the theoretical data proved that hydrogen bonding (approx. -15.2 kcal/mol) is the most important interaction, followed by π⋯π stacking (approx. -11.1 kcal/mol); meanwhile, the contribution of halogen bonding (approx. -3.6 kcal/mol) is the smallest among these interactions. The structure of the isomeric compound trans-A does not exhibit a 2D SOF architecture. It is assembled by the combined action of hydrogen bonding and π⋯π stacking, without the involvement of halogen bonds. A comparison of the cis-A structures with that of trans-A indicated that halogen bonding, although it has the lowest energy in cis-A-based cocrystals, plays a significant role in the crystal design of the hybrid 2D SOF. The majority of the reported porous halogen-bonded organic frameworks were assembled via iodine and bromine-based contacts, while chlorine-based systems-which, in our case, are structure-directing-were unknown before this study.


Subject(s)
Halogens , Iodine , Hydrogen , Bromine , Chlorine , Solvents
10.
Molecules ; 29(10)2024 May 10.
Article in English | MEDLINE | ID: mdl-38792107

ABSTRACT

The reaction between 5-acetylbarbituric acid and 4-dimethylthiosemicarbazide or 4-hexamethyleneiminyl thiosemicarbazide produces 5-acetylbarbituric-4-dimethylthiosemicarbazone (H2AcbDM) and 5-acetylbarbituric-4N-hexamethyleneiminyl thiosemicarbazone (H2Acbhexim). Eight new complexes with different copper(II) salts have been prepared and characterized using elemental analysis, molar conductance, UV-Vis, ESI-HRMS, FT-IR, magnetic moment, EPR, and cyclic voltammetry. In addition, three-dimensional molecular structures of [Cu(HAcbDM)(H2O)2](NO3)·H2O (3a), [Cu(HAcbDM)(H2O)2]ClO4 (4), and [Cu(HAcbHexim)Cl] (6) were determined by single crystal X-ray crystallography, and an analysis of their supramolecular structure was carried out. The H-bonded assemblies were further studied energetically using DFT calculations and MEP surface and QTAIM analyses. In these complexes, the thiosemicarbazone coordinates to the metal ion in an ONS-tridentate manner, in the O-enolate/S-thione form. The electrochemical behavior of the thiosemicarbazones and their copper(II) complexes has been investigated at room temperature using the cyclic voltammetry technique in DMFA. The Cu(II)/Cu(I) redox system was found to be consistent with the quasi-reversible diffusion-controlled process.

11.
Molecules ; 29(3)2024 Jan 30.
Article in English | MEDLINE | ID: mdl-38338397

ABSTRACT

Zn(II) coordination polymers are being increasingly studied for their stability and properties. Similarly, there is a growing interest in imidazo[1,5-a]pyridine derivatives, which show great potential in luminescence and pharmaceutical applications. In this work, we successfully synthesized and crystallized three new coordination polymers, using Zn(II) as the metallic node, dicarboxylic acids of different length and nature as linkers, and a linear ditopic imidazo[1,5-a]pyridine derivative, to explore the role of this molecule as a propagator of the dimensionality of the structure or as an ancillary ligand. Our work demonstrates the structural capability of imidazo[1,5-a]pyridines in an unexplored domain for this family of ligands. Notably, we observed a pronounced ability of this heterocyclic scaffold to establish π···π interactions in the solid state. The supramolecular π-stacked assemblies were theoretically analyzed using DFT calculations based on model structures.

12.
Angew Chem Int Ed Engl ; 63(29): e202405400, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38727609

ABSTRACT

The chemistry of light dipnictenes has been widely investigated in the last century with remarkable achievements especially for azobenzene derivatives. In contrast, distibenes and dibismuthenes are relatively rare and show very limited reactivity. Herein, we have designed a protocol using visible light to enhance the reactivity of heavy dipnictenes. Exploiting the distinctive π-π* transition, we have been able to isolate unique examples of dipnictene-cobalt complexes. The reactivity of the distibene complex was further exploited using red light in the presence of a diazoolefin to access an unusual four-membered bicyclo[1.1.0]butane analog, containing only a single carbon atom. These findings set the bases to a conceptually new strategy in heavy element double bonds chemistry where visible light is at the front seat of bond activation.

13.
Angew Chem Int Ed Engl ; : e202411347, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38967094

ABSTRACT

The objective of this study was to create artificial enzymes that capitalize on pnictogen bonding, a s-hole interaction that is essentially absent in biocatalysis.  For this purpose, stibine catalysts were equipped with a biotin derivative and combined with streptavidin mutants to identify an efficient transfer hydrogenation catalyst for the reduction of a fluorogenic quinoline substrate.  Increased catalytic activity from wild-type streptavidin to the best mutants coincides with the depth of the s hole on the Sb(V) center, and the emergence of saturation kinetic behavior.  Michaelis-Menten analysis reveals transition-state recognition in the low micromolar range, more than three orders of magnitude stronger than the millimolar substrate recognition.  Carboxylates preferred by the best mutants contribute to transition-state recognition by hydrogen-bonded ion pairing and anion-π interactions with the emerging pyridinium product.  The emergence of challenging stereoselectivity in aqueous systems further emphasizes compatibility of pnictogen bonding with higher order systems catalysis.

14.
Angew Chem Int Ed Engl ; : e202409963, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38934220

ABSTRACT

Herein we have evidenced the formation of favorable π-hole Br···metal noncovalent interactions (NCIs) involving elements from groups 9, 11 and 12. More in detail, M (M = Co2+, Ni2+, Cu2+ and Zn2+) containing porphyrins have been synthesized and their supramolecular assemblies structurally characterized by means of single crystal X-ray diffraction and Hirshfeld surface analyses, revealing the formation of directional Br···M contacts in addition to ancillary hydrogen bond and lone pair-π bonds. Computations at the PBE0-D3/def2-TZVP level of theory revealed the π-hole nature of the Br···M interaction. In addition, the physical nature of these NCIs was studied using Quantum Chemistry methodologies, providing evidence of π-hole Spodium and Regium bonds in Zn2+ and Cu2+ porphyrins, in addition to unveiling the presence of  a π-hole for group 9 (Co2+). On the other hand, group 10 (Ni2+) acted as both electron donor and acceptor moiety without showing an electropositive π-hole. Owing to the underexplored potential of π-hole interactions in transition metal chemistry, we believe the results reported herein will be useful in supramolecular chemistry, organometallics, and solid-state chemistry by i) putting under the spotlight the π-hole chemistry involving first row transition metals and ii) unlocking a new tool to direct the self-assembly of metalloporphyrins.

15.
J Am Chem Soc ; 145(18): 10364-10375, 2023 May 10.
Article in English | MEDLINE | ID: mdl-37105536

ABSTRACT

Cationic imidazoliumyl(phosphonio)-phosphanides [LC-P-PR3]+ (1a-e+, LC = 4,5-dimethyl-1,3-diisopropylimidazolium-2-yl; R = alkyl, aryl) are obtained via the nucleophilic fragmentation of tetracationic tetraphosphetane [(LC-P)4][OTf]4 (2[OTf]4) with tertiary phosphanes. They act as [LC-P]+ transfer reagents in phospha-Wittig-type reactions, when converted with various thiocarbonyls, giving unprecedented cationic phosphaalkenes [LC-P═CR2]+ (5a-f[OTf]) or phosphanides [LC-P-CR(NR2')]+ (6a-d[OTf]). Theoretical calculations suggest that three-membered cyclic thiophosphiranes are crucial intermediates of this reaction. To test this hypothesis, treatment of [LC-P-PPh3]+ with phosphaalkenes, that are isolobal to thioketones, permits the isolation of diphosphirane salts 11a,b[OTf]. Furthermore, preliminary studies suggest that the cationic phosphaalkene [LC-P═CPh2]+ may be employed to access rare examples of η2-P═C π-complexes with Pd0 and Pt0 when treated with [Pd(PPh3)4] and [Pt(PPh3)3] for which analogous complexes of neutral phosphaalkenes are scarce. The versatility of [LC-P]+ as a valuable P1 building block was showcased in substitution reactions of the transferred LC-substituent using nucleophiles. This is demonstrated through the reactions of 5a[OTf] and 6c[OTf] with Grignard reagents and KNPh2, providing a convenient, high-yielding access to MesP═CPh2 (16) and otherwise difficult-to-synthesize 1,3-diphosphetane 17 and P-aminophosphaalkenes.

16.
Chemistry ; 29(60): e202302176, 2023 Oct 26.
Article in English | MEDLINE | ID: mdl-37518768

ABSTRACT

Analyses of the Cambridge Structural Database and theoretical calculations (PBE0-D3/def2-TZVP level, atoms-in-molecules, natural bond orbital studies) prove the formation of net attractive noncovalent interactions between group 5 elements and electron-rich atoms (neutral or anionic). These kinds of bonding are markedly different from coordination bonds formed by the same elements and possess the distinctive features of σ-hole interactions. The term erythronium bond is proposed to denote these bonds. X-ray structures of vanadate-dependent bromoperoxidases show that these interactions are present also in biological systems.

17.
Chemistry ; 29(69): e202302162, 2023 Dec 11.
Article in English | MEDLINE | ID: mdl-37682579

ABSTRACT

Homoleptic [L-I-L]+ iodine(I) complexes (where L is a R3 R2 R1 N tertiary amine) were synthesized via the [L-Ag-L]+ → [L-I-L]+ cation exchange reaction. In solution, the amines form [R3 R2 R1 N-Ag-NR1 R2 R3 ]+ silver(I) complexes, which crystallize out from solution as the meso-[L-Ag-L]+ complexes, as characterized by X-ray crystallography. The subsequent [L-I-L]+ iodine(I) analogues were extremely reactive and could not be isolated in the solid state. Density functional theory (DFT) calculations were performed to study the Ag+ -N and I+ -N interaction energies in silver(I) and iodine(I) complexes, with the former ranging from -80 to -100 kJ mol-1 and latter from -260 to -279 kJ mol-1 . The X-ray crystal structures revealed Ag+ ⋅⋅⋅Cπ and Ag+ ⋅⋅⋅H-C short contacts between the silver(I) cation and flexible N-alkyl/N-aryl groups, which are the first of their kind in such precursor complexes.

18.
Chemphyschem ; 24(24): e202300585, 2023 Dec 14.
Article in English | MEDLINE | ID: mdl-37792318

ABSTRACT

Some literature reports have shown the existence of short Hg(II)⋅⋅⋅d8 [M] (M=Pd, Pt) contacts between linear Hg(II) and square planar d8 [M] complexes that have been defined as heterometallophilic interactions. Linear L-Hg(II)-L complexes exhibit a π-hole or positive belt of electrostatic potential at the Hg atom, whereas late transition metals can serve as effective electron donors through their filled dz 2 orbitals. This study provides compelling evidence that Hg(II)⋅⋅⋅d8 [M] interactions should be more appropriately termed spodium bonds.

19.
Chemphyschem ; 24(16): e202300298, 2023 Aug 15.
Article in English | MEDLINE | ID: mdl-37306232

ABSTRACT

Single crystal X-ray diffraction of iodate and bromate salts shows that the I and Br atoms in IO3 - and BrO3 - anions form short and linear O-I/Br⋅⋅⋅O contacts with the O atoms of nearby anions. Non-centrosymmetric systems are formed wherein anions are orderly aligned into supramolecular 1D and 2D networks. Theoretical evidences, namely the outcome of QTAIM and NCIplot studies, prove the attractive nature of these contacts and the ability of iodate and bromate anions to act as robust halogen bond (HaB) donors. The HaB is proposed as a general and effective assisting tool to control the architecture of acentric iodate salts.

20.
Faraday Discuss ; 244(0): 77-95, 2023 Aug 11.
Article in English | MEDLINE | ID: mdl-37089087

ABSTRACT

The chalcogen bond (ChB) is a noncovalent attraction between an electrophilic chalcogen atom and a nucleophilic (Nu) region in the same (intramolecular) or another (intermolecular) molecular entity: R-Ch⋯Nu (Ch = O, S, Se or Te; R = substituents; Nu = nucleophile). ChB is comparable to the hydrogen and halogen bonds both in terms of strengths and directionality. However, in contrast to the monovalent halogen atoms, usually the divalent or tetravalent chalcogen atoms are able to display more than one electrophilic centre (on account of the existence of two or three species bonded to the chalcogen atom), which provides an additional opportunity in the use of this type of noncovalent binding in synthetic operations. In this work, the role of ChB at the secondary coordination sphere of metal complexes through copper(II)-mediated activation of dioxygen or of one nitrile group of a 1,2,5-selenadiazole-3,4-dicarbonitrile ligand to form a carbimidate or an imino-carboxylic acid is demonstrated. DFT calculations allowed evaluation of the strength of the ChBs and proved their relevant structure directing role in the solid state architectures. The effect of metal-coordination on the σ-hole opposite to the coordinated SeO bond has been analysed using molecular electrostatic potential (MEP) surfaces and explains the greater ability of the coordinated selenoxide derivatives to form strong ChBs.

SELECTION OF CITATIONS
SEARCH DETAIL