Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Country/Region as subject
Language
Publication year range
1.
Am J Bot ; 102(12): 2041-57, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26643889

ABSTRACT

PREMISE OF THE STUDY: Delimitation of Amelanchier species is difficult because of polyploidy and gametophytic apomixis. A first step in unraveling this species problem is understanding the diversity of the diploids that contributed genomes to polyploid apomicts. This research helps clarify challenging species-delimitation problems attending polyploid, apomictic complexity. METHODS: We sampled 431 diploid accessions from 13 species, of which 10 are North American and three are Old World. Quantitative morphological analyses tested the null hypothesis of no discrete groups. Using three to nine diploid accessions per species, we constructed phylogenies with DNA sequences from ETS, ITS, the second intron of LEAFY, and chloroplast regions rpoB-trnC, rpl16, trnD-trnT, and ycf6-psbM. KEY RESULTS: Most Amelanchier diploid taxa are morphologically and ecogeographically distinct and genetically exclusive lineages. They rarely hybridize with one another. Nuclear and chloroplast DNA sequences almost completely resolve the Amelanchier phylogeny. The backbone is the mostly western North American clade A, eastern North American clade B, and Old World clade O. DNA sequences and morphology support clades A and O as sister taxa. Despite extensive paralogy, our LEAFY data are phylogenetically informative and identify a clade (T) of three arborescent taxa within clade B. CONCLUSIONS: Amelanchier diploids differ strikingly from polyploid apomicts, in that hybridization among them is rare, and they form taxa that would qualify as species by most species concepts. Knowledge of diploid morphology, phylogeny, and ecogeography provides a foundation for understanding the evolutionary history of polyploid apomicts, their patterns of diversification, and their species status.


Subject(s)
Apomixis , Biological Evolution , Diploidy , Genetic Variation , Rosaceae/physiology , Chloroplast Proteins/genetics , DNA, Intergenic/genetics , Introns , Phylogeny , Plant Proteins/genetics , Rosaceae/genetics
2.
Am J Bot ; 101(8): 1375-87, 2014 Aug.
Article in English | MEDLINE | ID: mdl-25156985

ABSTRACT

UNLABELLED: • PREMISE OF THE STUDY: Amelanchier polyploid apomicts differ from sexual diploids in their more complex diversification, greater species problems, and geographic distribution. To understand these differences, we investigated the occurrence of polyploidy and frequency of apomixis. This research helps clarify species delimitation in an evolutionarily complex genus.• METHODS: We used flow cytometry to estimate genome size of 1355 plants. We estimated the frequency of apomixis from flow-cytometrically determined ploidy levels of embryo and endosperm and from a progeny study using RAPD markers. We explored relationships of triploids to other ploidy levels and of ploidy levels to latitude plus elevation.• KEY RESULTS: Diploids (32% of sample) and tetraploids (62%) were widespread. Triploids (6%) mostly occurred in small numbers with diploids from two or more species or with diploids and tetraploids. Seeds from diploids were 2% apomictic, the first report of apomixis in Amelanchier diploids. Seeds from triploids were 75% apomictic. We documented potential triploid bridge and triploid block from unbalanced endosperm and low pollen viability. Seeds from tetraploids were 97% apomictic, and tetraploids often formed microspecies. We did not find strong evidence for geographical parthenogenesis in North American Amelanchier. Most currently recognized species contained multiple ploidy levels that were morphologically semicryptic.• CONCLUSIONS: Documentation of numerous transitions from diploidy to polyploidy helps clarify diversification, geographic distribution, and the species problem in Amelanchier. Despite the infrequent occurrence of triploids, their retention of 25% sexuality and capacity for triploid bridge may be important steps between sexual diploids and predominantly apomictic tetraploids.


Subject(s)
Apomixis , Biodiversity , Genetic Speciation , Plant Dispersal , Ploidies , Rosaceae/physiology , Chromosomes, Plant , Ecosystem , Endosperm , Genome, Plant , North America , Pollen , Polyploidy , Reproduction/genetics , Rosaceae/genetics , Seeds , Species Specificity
3.
Evol Appl ; 10(6): 551-562, 2017 07.
Article in English | MEDLINE | ID: mdl-28616063

ABSTRACT

Many rare and endemic species experience increased rates of self-fertilization and mating among close relatives as a consequence of existing in small populations within isolated habitat patches. Variability in self-compatibility among individuals within populations may reflect adaptation to local demography and genetic architecture, inbreeding, or drift. We use experimental hand-pollinations under natural field conditions to assess the effects of gene flow in 21 populations of the central Appalachian endemic Trifolium virginicum that varied in population size and degree of isolation. We quantified the effects of distance from pollen source on pollination success and fruit set. Rates of self-compatibility varied dramatically among maternal plants, ranging from 0% to 100%. This variation was unrelated to population size or degree of isolation. Nearly continuous variation in the success of selfing and near-cross-matings via hand pollination suggests that T. virginicum expresses pseudo-self-fertility, whereby plants carrying the same S-allele mate successfully by altering the self-incompatibility reaction. However, outcrossing among populations produced significantly higher fruit set than within populations, an indication of drift load. These results are consistent with strong selection acting to break down self-incompatibility in these small populations and/or early-acting inbreeding depression expressed upon selfing.

SELECTION OF CITATIONS
SEARCH DETAIL