Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Publication year range
1.
J Phys Chem A ; 119(47): 11548-64, 2015 Nov 25.
Article in English | MEDLINE | ID: mdl-26510818

ABSTRACT

The catalytic mechanism of 2NO + 2CO → N2 + 2CO2 on Rh4 cluster has been systematically investigated on the ground and first excited states at the B3LYP/6-311+G(2d),SDD level. For the overall reaction of 2NO + 2CO → N2 + 2CO2, the main reaction pathways take place on the facet site rather than the edge site of the Rh4 cluster. The turnover frequency (TOF) determining transition states are characteristic of the second N-O bond cleavage with rate constant k4 = 1.403 × 10(11) exp (-181 203/RT) and the N-N bond formation for the intermediate N2O formation with rate constant k2 = 3.762 × 10(12) exp (-207 817/RT). The TOF-determining intermediates of (3)N(b)Rh4NO and (3)N(b)Rh4O(b)(NO) are associated with the nitrogen-atom molecular complex, which is in agreement with the experimental observation of surface nitrogen. On the facet site of Rh4 cluster, the formation of CO2 stems solely from the recombination of CO and O atom, while N2 originates partly from the recombination of two N atoms and partly from the decomposition of N2O. For the N-O bond cleavage or the synchronous N-O bond cleavage and C-O bond formation, the neutral Rh4 cluster exhibits better catalytic performance than the cationic Rh4(+) cluster. Alternatively, for N-N bond formation, the cationic Rh4(+) cluster possesses better catalytic performance than the neutral Rh4 cluster.

2.
J Phys Chem B ; 118(48): 13890-902, 2014 Dec 04.
Article in English | MEDLINE | ID: mdl-25405722

ABSTRACT

The coordination of cyclic ß-D-glucose (CDG) to both [Al(OH)(aq)](2+) and [Al(OH)2(aq)](1+) ions has been theoretically investigated, using quantum chemical calculations at the PBE0/6-311++G(d,p), aug-cc-pvtz level under polarizable continuum model IEF-PCM, and molecular dynamics simulations. [Al(OH)(aq)](2+) ion prefers to form both six- and five-coordination complexes, and [Al(OH)2(aq)](+) ion to form four-coordination complex. The two kinds of oxygen atoms (on hydroxyl and ring) of CDG can coordinate to both [Al(OH)(aq)](2+) and [Al(OH)2(aq)](+) ions through single-O-ligand and double-O-ligand coordination, wherein there exists some negative charge transfer from the lone pair electron on 2p orbital of the coordinated oxygen atom to the empty 3s orbital of aluminum atom. The charge transfer from both the polarization and H-bond effects stabilizes the coordinated complex. When the CDG coordinates to both [Al(OH)(H2O)4](2+) and [Al(OH)2(H2O)2](1+) ions, the exchange of water with CDG would take place. The six-coordination complex [(ηO4,O6(2)-CDG)Al(OH)(H2O)3](2+) and the five-coordination complex [(ηO4,O6(2)-CDG)Al(OH)2(H2O)](1+) are predicted to be the thermodynamically most preferable, in which the polarization effect plays a crucial role. The molecular dynamics simulations testify the exchange of water with CDG, and then support a five-coordination complex [(ηO4,O6(2)-CDG)Al(OH)2(H2O)](1+) as the predominant form of the CDG coordination to [Al(OH)2(aq)](1+) ion.

SELECTION OF CITATIONS
SEARCH DETAIL