Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters

Database
Language
Publication year range
1.
J Cell Physiol ; 233(7): 5267-5280, 2018 07.
Article in English | MEDLINE | ID: mdl-29231961

ABSTRACT

Numerous studies have shown that Astragalus polysaccharide (APS) has strong antioxidant effects and high practical value for preserving semen at low temperatures in vitro. However, to date, little attention has been paid to the precise mechanism of APS in sperm preservation at 4 °C. Thus, to gain further insight into the protective effects of APS, the present study was performed to assess the changes in sperm quality parameters, antioxidant capacity, ATP content, and protein phosphorylation levels. Here, we demonstrated that supplementation with APS could effectively preserve boar sperm quality parameters such as sperm motility, acrosome integrity, and mitochondrial membrane potential. Moreover, we found that the positive effects of APS on boar sperm quality were mainly due to the elimination of excessive mitochondrial ROS, the improvement of antioxidant capacities and the enhancement of ATP levels. Interestingly, by conducting a series of studies on protein phosphorylation, we also discovered that APS could protect boar sperm from oxidative stress and energy deficiency through inhibiting the protein dephosphorylation caused by ROS via the cAMP-PKA signaling pathway. To our knowledge, this is the first exploration of the molecular mechanism underlying the protective roles of APS toward ROS toxicity from the perspective of energy metabolism and protein modification. This study comprehensively provides novel insights into the action mechanism of the protective effects of antioxidants on sperm stored at 4 °C and reveals the practical feasibility of using APS as a boar semen extender supplement for assisted reproductive technology.


Subject(s)
Cryopreservation , Plant Extracts/pharmacology , Polysaccharides/pharmacology , Semen Preservation , Animals , Astragalus Plant/chemistry , Male , Reactive Oxygen Species/antagonists & inhibitors , Reactive Oxygen Species/toxicity , Semen/drug effects , Semen/physiology , Sperm Motility/drug effects , Sperm Motility/physiology , Spermatozoa/drug effects , Spermatozoa/physiology , Swine
2.
Nanomicro Lett ; 11(1): 104, 2019 Nov 27.
Article in English | MEDLINE | ID: mdl-34138040

ABSTRACT

We report the carboxylated C60 improved the survival and quality of boar sperm during liquid storage at 4 °C and thus propose the use of carboxylated C60 as a novel antioxidant semen extender supplement. Our results demonstrated that the sperm treated with 2 µg mL-1 carboxylated C60 had higher motility than the control group (58.6% and 35.4%, respectively; P ˂ 0.05). Moreover, after incubation with carboxylated C60 for 10 days, acrosome integrity and mitochondrial activity of sperm increased by 18.1% and 34%, respectively, compared with that in the control group. Similarly, the antioxidation abilities and adenosine triphosphate levels in boar sperm treated with carboxylated C60 significantly increased (P ˂ 0.05) compared with those in the control group. The presence of carboxylated C60 in semen extender increases sperm motility probably by suppressing reactive oxygen species (ROS) toxicity damage. Interestingly, carboxylated C60 could protect boar sperm from oxidative stress and energy deficiency by inhibiting the ROS-induced protein dephosphorylation via the cAMP-PKA signaling pathway. In addition, the safety of carboxylated C60 as an alternative antioxidant was also comprehensively evaluated by assessing the mean litter size and number of live offspring in the carboxylated C60 treatment group. Our findings confirm carboxylated C60 as a novel antioxidant agent and suggest its use as a semen extender supplement for assisted reproductive technology in domestic animals.

3.
Theriogenology ; 116: 71-82, 2018 Aug.
Article in English | MEDLINE | ID: mdl-29778923

ABSTRACT

The reproductive efficiency of Meishan pigs is higher than that of Duroc pigs, but the underlying molecular mechanism for this disparity remains unclear. No systematic quantitative proteomics studies, comparing global proteins in Meishan and Duroc boar spermatozoa have been reported. Therefore, we applied iTRAQ labeling coupled with mass spectrometry, and analyzed the differences in proteins between Meishan and Duroc sperm. In the present study, a total of 1597 proteins were quantified. Of these proteins, 190 showed statistically significant fold changes between Meishan and Duroc spermatozoa. Bioinformatics analysis revealed that these differentially abundant proteins were primarily involved in energy metabolism, sperm motility, capacitation and sperm-oocyte binding. Remarkably, SPAG6, ACR, LDHC, CALM, ACE and ENO1 which are positively related to high litter size, were more abundant in Meishan spermatozoa than in Duroc spermatozoa. Moreover, APOA1, NDUFS2 and RAB2A which are negatively related to farrowing rates, were less abundant in Meishan spermatozoa than in Duroc spermatozoa. Interestingly, essential enzymes in Glycolysis/Gluconeogenesis, such as HK1, ALDH2, LDHA and LDHC, were markedly up-regulated in Meishan spermatozoa compared to Duroc spermatozoa. In addition, we first demonstrated that the levels of protein phosphorylation in Meishan spermatozoa were higher than those in Duroc. Taken together, the physiologically and functionally differential proteins may be one main reason for explaining the high reproductive efficiency of Meishan boar.


Subject(s)
Reproduction/genetics , Spermatozoa/metabolism , Swine/genetics , Animals , Crosses, Genetic , Female , Gene Expression Profiling , Litter Size/genetics , Male , Proteomics , Reproduction/physiology , Spermatozoa/physiology , Swine/physiology
4.
Reprod Toxicol ; 75: 23-32, 2018 01.
Article in English | MEDLINE | ID: mdl-29158198

ABSTRACT

Cadmium (Cd) has been reported to inhibit mouse sperm motility by inducing the tyrosine phosphorylation of dihydrolipoamide dehydrogenase (DLD). This study aimed to assess the potential effects of vitamin C (Vc) on ameliorating Cd-induced tyrosine phosphorylation of DLD and the specific underlying mechanism. Vc induced the dephosphorylation of DLD or inhibited the tyrosine phosphorylation of DLD. Accordingly, DLD activity, nicotinamide adenine dinucleotide hydrogen (NADH) levels, ATP levels and motility parameters were all restored to normal levels by Vc. Moreover, the effects of Vc on ameliorating these indicators had striking similarities to the effects of ethylenediaminetetraacetic acid (EDTA). In addition, neither the antioxidant melatonin nor the universal oxidant H2O2 influenced the tyrosine phosphorylation of DLD. Hence, the protective effects of Vc on the tyrosine phosphorylation of DLD might be attributed to its binding to Cd ions outside or inside sperm, and were not due to its antioxidant properties.


Subject(s)
Antioxidants/pharmacology , Ascorbic Acid/pharmacology , Cadmium/toxicity , Dihydrolipoamide Dehydrogenase/metabolism , Environmental Pollutants/toxicity , Spermatozoa/drug effects , Vitamins/pharmacology , Animals , Cadmium/metabolism , Cells, Cultured , Environmental Pollutants/metabolism , Male , Mice, Inbred Strains , Oxidative Stress/drug effects , Permeability , Phosphorylation , Sperm Motility/drug effects , Spermatozoa/enzymology , Spermatozoa/metabolism
5.
Theriogenology ; 102: 87-97, 2017 Oct 15.
Article in English | MEDLINE | ID: mdl-28756326

ABSTRACT

Both bovine serum albumin (BSA) and skim-milk have been reported to improve sperm quality, primarily by enhancing sperm motility, but the underlying molecular mechanism remains unknown. In this study, boar semen samples were collected and diluted with Androstar® Plus extender containing different concentrations (0, 2, 4 g/l) of BSA and skim-milk. On days 0, 3, 5 and 7, the sperm motility parameters were determined using computer-assisted sperm analysis (CASA), and the ATP concentrations, glyceraldehyde-3-phosphate dehydrogenase (GAPDH) activity and mitochondrial membrane potential were evaluated using commercial kits. The levels of protein phosphorylation, acylation and ubiquitination were analyzed by western blot. The results showed that supplementation with BSA and skim-milk provided higher sperm motility parameters, ATP levels, GAPDH activity and mitochondrial membrane potential than the control group (P < 0.05). Interestingly, we found that the levels of protein phosphorylation, acetylation and succinylation of the spermatozoa in the treated groups were dramatically higher than those in the control group (P < 0.05). Though the protein ubiquitination level had a decreasing trend, the change in ubiquitination modification was not significantly different between the control group and treated groups. Moreover, the changes in protein modifications between the BSA treated group and skim-milk treated group were not distinctly dissimilar. Taken together, these results suggest that BSA and skim-milk had a positive role in the regulation of boar sperm motility by influencing sperm protein modifications changes as well as increasing the GAPDH activity, mitochondrial membrane potential, and intracellular ATP content. This research provides novel insights into the molecular mechanisms underlying BSA and skim-milk protective effects on boar sperm in the male reproductive system and suggests the feasibility of using skim-milk instead of BSA as a boar semen extender supplement.


Subject(s)
Energy Metabolism/drug effects , Milk , Serum Albumin, Bovine , Sperm Motility/drug effects , Spermatozoa/drug effects , Swine/physiology , Animals , Male , Semen , Semen Analysis , Semen Preservation/methods , Spermatozoa/physiology
6.
Reprod Toxicol ; 59: 66-79, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26582256

ABSTRACT

Hexavalent chromium reportedly induces reproductive toxicity and further inhibits male fertility in mammals. In this study, we investigated the molecular mechanism by which hexavalent chromium affects motility signaling in boar spermatozoa in vitro. The results indicated that Cr(VI) decreased sperm motility, protein phosphorylation, mitochondrial membrane potential (ΔΨm) and metabolic enzyme activity starting at 4µmol/mL following incubation for 1.5h. Notably, all parameters were potently inhibited by 10µmol/mL Cr, while supplementation with the dibutyryl-cAMP (dbcAMP) and the 3-isobutyl-1-methylxanthine (IBMX) prevented the inhibition of protein phosphorylation. Interestingly, high concentrations of Cr (>10µmol/mL) increased the tyrosine phosphorylation of some high-molecular-weight proteins in the principle piece but decreased that in the middle piece associated with an extreme reduction of sperm motility. These results suggest that chromium affects boar sperm motility by impairing tyrosine phosphorylation in the midpiece of sperm by blocking the cAMP/PKA pathway in boar sperm in vitro.


Subject(s)
Chromates/toxicity , Chromium/toxicity , Environmental Pollutants/toxicity , Potassium Compounds/toxicity , Protein Processing, Post-Translational/drug effects , Sperm Midpiece/drug effects , Sperm Motility/drug effects , Animals , Cyclic AMP/metabolism , Cyclic AMP-Dependent Protein Kinases/metabolism , Dose-Response Relationship, Drug , Male , Membrane Potential, Mitochondrial/drug effects , Phosphorylation , Signal Transduction/drug effects , Sperm Midpiece/metabolism , Sperm Midpiece/pathology , Swine , Tyrosine
7.
Anim Reprod Sci ; 172: 39-51, 2016 Sep.
Article in English | MEDLINE | ID: mdl-27423488

ABSTRACT

Considering the importance of calcium (Ca(2+)) in regulating sperm capacitation, hyperactivation and acrosome reaction, little is known about the molecular mechanism of action of this ion in this process. In the present study, assessment of the molecular mechanism from the perspective of energy metabolism occurred. Sperm motility variables were determined using computer-assisted sperm analysis (CASA) and the phosphorylation of PKA substrates, tyrosine residues and AMP-activated protein kinase (AMPK) were analyzed by Western blot. Moreover, intracellular sperm-specific glyceraldehyde 3-phosphatedehydrogenase (GAPDH) activity, 3'-5'-cyclic adenosine monophosphate (cAMP) and adenosine 5'-triphosphate (ATP) concentrations were assessed in boar sperm treated with Ca(2+). Results of the present study indicated that, under greater extracellular Ca(2+)concentrations (≥3.0mM), sperm motility and protein phosphorylation were inhibited. Interestingly, these changes were correlated with that of GAPDH activity, AMPK phosphorylation, cAMP and ATP concentrations. The negative effects of Ca(2+) on these intracellular processes were attenuated by addition of the calmodulin (CaM) inhibitor W7 and the inhibitor of calmodulin-dependent protein kinase (CaMK), KN-93. In the presence of greater extracellular Ca(2+), however, the phosphorylation pathway was suppressed by H-89. Taken together, these results suggested that Ca(2+) had a dual role in regulating boar sperm motility and protein phosphorylation due to the changes of cAMP and ATP concentrations, in response to cAMP-mediated signal transduction and the Ca(2+) signaling cascade. The present study provided some novel insights into the molecular mechanism underlying the effects of Ca(2+) on boar sperm as well as the involvement of energy metabolism in this mechanism.


Subject(s)
Calcium/pharmacology , Cyclic AMP/physiology , Proteins/metabolism , Sperm Motility/drug effects , Spermatozoa/drug effects , Swine/physiology , Adenosine Triphosphate/physiology , Animals , Calcium/metabolism , Gene Expression Regulation/drug effects , Male , Phosphorylation/drug effects , Spermatozoa/physiology
8.
Toxicology ; 357-358: 52-64, 2016 05 16.
Article in English | MEDLINE | ID: mdl-27289041

ABSTRACT

Cadmium (Cd) is reported to reduce sperm motility and functions. However, the molecular mechanisms of Cd-induced toxicity remain largely unknown, presenting a major knowledge gap in research on reproductive toxicology. In the present study, we identified a candidate protein, dihydrolipoamide dehydrogenase (DLD), which is a post-pyruvate metabolic enzyme, exhibiting tyrosine phosphorylation in mouse sperm exposed to Cd both in vivo and in vitro. Immunoprecipitation assay demonstrated DLD was phosphorylated in tyrosine residues without altered expression after Cd treatment, which further confirmed our identified result. However, the tyrosine phosphorylation of DLD did not participate in mouse sperm capacitation and Bovine Serum Albumin (BSA) effectively prevented the tyrosine phosphorylation of DLD. Moreover, Cd-induced tyrosine phosphorylation of DLD lowered its dehydrogenase activity and meanwhile, Nicotinamide Adenine Dinucleotide Hydrogen (NADH) content, Adenosine Triphosphate (ATP) production and sperm motility were all inhibited by Cd. Interestingly, when the tyrosine phosphorylation of DLD was blocked by BSA, the decrease of DLD activity, NADH and ATP content as well as sperm motility was also suppressed simultaneously. These results suggested that Cd-induced tyrosine phosphorylation of DLD inhibited its activity and thus suppressed the tricarboxylic acid (TCA) cycle, which resulted in the reduction of NADH and hence the ATP production generated through oxidative phosphorylation (OPHOXS). Taken together, our results revealed that Cd induced DLD tyrosine phosphorylation, in response to regulate TCA metabolic pathway, which reduced ATP levels and these negative effects led to decreased sperm motility. This study provided new understanding of the mechanisms contributing to the harmful effects of Cd on the motility and function of spermatozoa.


Subject(s)
Cadmium/toxicity , Dihydrolipoamide Dehydrogenase/metabolism , Sperm Motility/drug effects , Spermatozoa/drug effects , Tyrosine/metabolism , Adenosine Triphosphate/metabolism , Animals , Immunoprecipitation , Male , Mice , NAD/metabolism , Phosphorylation , Serum Albumin, Bovine/pharmacology , Sperm Capacitation/drug effects
9.
Reprod Toxicol ; 63: 96-106, 2016 08.
Article in English | MEDLINE | ID: mdl-27233480

ABSTRACT

Cadmium (Cd) has been reported to impair male fertility, primarily by disrupting sperm motility, but the underlying molecular mechanism remains unclear. Here we investigated the effects of Cd on sperm motility, tyrosine phosphorylation, AMP-activated protein kinase (AMPK) and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) activity, and ATP levels in vitro. Our results demonstrated that Cd inhibited sperm motility, GAPDH activity, AMPK activity and ATP production, and induced tyrosine phosphorylation of 55-57KDa proteins. Importantly, all the parameters affected by Cd were restored to normal levels when incubated with 10µM Cd in the presence of 30µM ethylene diamine tetraacetic acid (EDTA). Interestingly, changes of tyrosine phosphorylation levels of 55-57KDa proteins are completely contrary to that of other parameters. These results suggest that Cd-induced tyrosine phosphorylation of 55-57KDa proteins might act as an engine to block intracellular energy metabolism and thus decrease sperm motility.


Subject(s)
Cadmium/toxicity , Sperm Motility/drug effects , Tyrosine/metabolism , AMP-Activated Protein Kinases/metabolism , Adenosine Triphosphate/metabolism , Animals , Glyceraldehyde 3-Phosphate Dehydrogenase (NADP+)/metabolism , Male , Mice , Phosphorylation/drug effects , Spermatozoa/drug effects , Spermatozoa/metabolism , Spermatozoa/physiology
SELECTION OF CITATIONS
SEARCH DETAIL