Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters

Database
Language
Publication year range
1.
J Fluoresc ; 33(1): 239-253, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36399248

ABSTRACT

Throughout the opto-electronic devices industry, organic materials with considerable nonlinear optical (NLO) capabilities are being used. By employing 4,6-di(thiophen-2-yl)pyrimidine as a standard molecule, a series for new dyes (DMBMB1-DMBMB6) are created in the present paper by altering their functionalization with various electron acceptor (A) functional groups. The density functional fheory (DFT) and time dependent DFT (TD-DFT) based calculations have been performed to explore NLO responses by adjustment of different A units. The energy gap (Egap) of their highest occupied molecular orbitals (HOMOs) and lowest unoccupied molecular orbitals (LUMOs) was ranged between 0.22-2.43 eV which was also used to calculate their global chemical parameters (GRPs). All the new dyes were subjected to UV-Vis studies revealing their frequencies being red shifted from starting dye (DMBMB). The theoretical investigations like frontier molecular orbital (FMO) and natural bond orbital (NBO) analysis was used to investigate their intramolecular charge transfer (ICT). The dye DMBMB6 had the greatest linear polarizability, first hyperpolarizability (αtotal), and second order hyperpolarizability (ßtotal) for all the developed dyes. In conclusion, due of their low ICT, all the dyes showed potential NLO features. Scientific researchers would be able to harness these NLO features to discover NLO materials for current and future uses.

2.
J Fluoresc ; 32(5): 1629-1638, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35596854

ABSTRACT

A triplet diphenylcarbene, bis[3-bromo-5-(trifluoromethyl)[1,1'-biphenyl]-4-yl]methylidene (B3B), with exceptional stability was discovered by chemists from Japan's Mie University. To investigate its different quantum chemical features, a theoretical analysis was predicated on Density Functional Theory (DFT) and Time Dependent-DFT (TD-DFT) based technique. According to the findings, the singlet-triplet energy gap (ES-T), as well as HOMO-LUMO energy bandgap (EH-L), was found to be diminished when nucleophilicity (N) rose. We looked at the geometrical dimensions, molecular orbitals (MOs), electronic spectra, electrostatic potential, molecular surfaces, reactivity characteristics, and thermodynamics features of the title carbene (B3B). Its electronic spectra in different solvents were calculated using TD-DFT and Polarizable Continuum Model (PCM) framework. The estimated absorption maxima of B3B were seen between 327 and 340 nm, relying on the solvents, and were attributed to the S0 → S1 transition. Estimated fluorescence spectral peaks were found around 389 and 407 nm with the S1 and S0 transitions being identified. Its fluorescence/absorption intensities revealed a blue shift change when the solvent polarity was increased. The least exciting state has been discovered to be the π → π* charge-transfer (CT) phase. According to the Natural Bonding Orbital (NBO) exploration, ICT offers a significant role in chemical system destabilization. Furthermore, several hybrid features were used to determine the NLO (nonlinear optical) features (polarizability, first-order hyperpolarizability, and dipole moment). The calculated values suggest that B3B is a promising candidate for further research into nonlinear optical properties.

3.
Spectrochim Acta A Mol Biomol Spectrosc ; 326: 125244, 2024 Oct 09.
Article in English | MEDLINE | ID: mdl-39395279

ABSTRACT

Understanding the intricacies of polymorphic origins in nonconjugated crystal systems is crucial for optimizing their properties. This study focuses on the crystal growth, characterization, and nonlinear optical (NLO) responses of a system analyzed using single crystal X-ray analysis, revealing a monoclinic geometry. Hirschfeld surface analysis emphasized the significance of intermolecular interactions in driving polymorph development, shedding light on the structural nuances influencing the material's properties. Through the evaluation of density functional theory parameters, the research found that the NLO responses of the system were as efficient as those of widely recognized materials like urea and KDP. Moreover, the stability of the system was confirmed through (NBO) analysis, showcasing its potential for practical applications. By manipulating the polymorphic crystal forms, researchers can potentially unveil new crystalline materials with tailored properties suitable for applications in optical and optoelectronic devices. This work underscores the importance of exploring novel crystal engineering strategies to harness the full potential of materials in the realm of advanced technologies.

4.
ACS Omega ; 8(2): 2112-2118, 2023 Jan 17.
Article in English | MEDLINE | ID: mdl-36687068

ABSTRACT

We report on time-dependent density functional theory calculations of the excited states of 63 different graphene quantum dots (GQDs) in square shape with side lengths of 1, 1.5, and 2 nm. We investigate the systematics and trends in the UV-vis absorption spectra of these GQDs, which are doped with elements B, N, O, S, and P at dopant percentages of 1.5%, 3%, 5%, and 7%. The results show how the peaks in the UV and visible parts of the spectrum as well as the total absorption evolve in the chemical parameter space along the coordinates of size, dopant type, and dopant percentage. The absorption spectra calculated here can be used to obtain particular GQD mixture proportions that would yield a desired absorption profile such as flat absorption across the whole visible spectrum or one that is locally peaked around a chosen wavelength.

5.
J Mol Model ; 29(8): 262, 2023 Jul 25.
Article in English | MEDLINE | ID: mdl-37490167

ABSTRACT

CONTEXT: The organic solar cells (OSCs) are being developed with the goal of improving their photovoltaic capabilities. Here, utilizing computational methods, six new nonfullerene acceptors (NFA) comprising dyes (A1-A6) have been created by end-group alterations of the Y123 framework as a standard (R). METHODS: The DFT-based investigations at B3LYP/6-31G + (d,p) level were applied to evaluate their properties. The planar geometries associated with these structures, which lead to improved conjugation, were validated by the estimation of molecular geometries. Dyes A1-A6 have shorter Egap than R, according to a frontier molecular orbital (FMO) investigation, which encourages charge transfer in them. The dyes with their maximum absorption range were shown by optical properties to be 692-711 nm, which is significantly better than R with its 684 nm range. Their electrostatic and Mulliken charge patterns provided additional evidence of the significant separation of charges within these structures. All the dyes A1-A6 had improved light harvesting efficiency (LHE) values as compared to Y123, highlighting their improved capacity to generate charge carriers by light absorption. With the exception of dye A4, all newly developed dyes might have a superior rate of charge carrier mobility than R, according to reorganization energies λre. Dyes A3 and A4 had the greatest open-circuit voltage (Voc). Dye A3 exhibited improvement in all of its examined properties, making it a promising choice in DSSC applications.

SELECTION OF CITATIONS
SEARCH DETAIL