Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 47
Filter
1.
Brain ; 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38662782

ABSTRACT

Neurological monogenic loss-of-function diseases are hereditary disorders resulting from gene mutations that decrease or abolish the normal function of the encoded protein. These conditions pose significant therapeutic challenges, which may be resolved through the development of innovative therapeutic strategies. RNA-based technologies, such as mRNA replacement therapy, have emerged as promising and increasingly viable treatments. Notably, mRNA therapy exhibits significant potential as a mutation-agnostic approach that can address virtually any monogenic loss-of-function disease. Therapeutic mRNA carries the information for a healthy copy of the defective protein, bypassing the problem of targeting specific genetic variants. Moreover, unlike conventional gene therapy, mRNA-based drugs are delivered through a simplified process that requires only transfer to the cytoplasm, thereby reducing the mutagenic risks related to DNA integration. Additionally, mRNA therapy exerts a transient effect on target cells, minimizing the risk of long-term unintended consequences. The remarkable success of mRNA technology for developing COVID-19 vaccines has rekindled interest in mRNA as a cost-effective method for delivering therapeutic proteins. However, further optimization is required to enhance mRNA delivery, particularly to the central nervous system, while minimizing adverse drug reactions and toxicity. In this comprehensive review, we delve into past, present, and ongoing applications of mRNA therapy for neurological monogenic loss-of-function diseases. We also discuss the promises and potential challenges presented by mRNA therapeutics in this rapidly advancing field. Ultimately, we underscore the full potential of mRNA therapy as a game-changing therapeutic approach for neurological disorders.

2.
Mov Disord ; 39(3): 486-497, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38197134

ABSTRACT

BACKGROUND: Spinocerebellar ataxia type 4 (SCA4) is an autosomal dominant ataxia with invariable sensory neuropathy originally described in a family with Swedish ancestry residing in Utah more than 25 years ago. Despite tight linkage to the 16q22 region, the molecular diagnosis has since remained elusive. OBJECTIVES: Inspired by pathogenic structural variation implicated in other 16q-ataxias with linkage to the same locus, we revisited the index SCA4 cases from the Utah family using novel technologies to investigate structural variation within the candidate region. METHODS: We adopted a targeted long-read sequencing approach with adaptive sampling on the Oxford Nanopore Technologies (ONT) platform that enables the detection of segregating structural variants within a genomic region without a priori assumptions about any variant features. RESULTS: Using this approach, we found a heterozygous (GGC)n repeat expansion in the last coding exon of the zinc finger homeobox 3 (ZFHX3) gene that segregates with disease, ranging between 48 and 57 GGC repeats in affected probands. This finding was replicated in a separate family with SCA4. Furthermore, the estimation of this GGC repeat size in short-read whole genome sequencing (WGS) data of 21,836 individuals recruited to the 100,000 Genomes Project in the UK and our in-house dataset of 11,258 exomes did not reveal any pathogenic repeats, indicating that the variant is ultrarare. CONCLUSIONS: These findings support the utility of adaptive long-read sequencing as a powerful tool to decipher causative structural variation in unsolved cases of inherited neurological disease. © 2024 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Subject(s)
Cerebellar Ataxia , Spinocerebellar Ataxias , Humans , Pedigree , Spinocerebellar Ataxias/genetics , Cerebellar Ataxia/genetics , Exons , Homeodomain Proteins/genetics
3.
Brain ; 146(10): 4105-4116, 2023 10 03.
Article in English | MEDLINE | ID: mdl-37075222

ABSTRACT

Increasing evidence shows that disease spreading in amyotrophic lateral sclerosis (ALS) follows a preferential pattern with more frequent involvement of contiguous regions from the site of symptom onset. The aim of our study was to assess if: (i) the burden of upper (UMN) and lower motor neuron (LMN) involvement influences directionality of disease spreading; (ii) specific patterns of disease progression are associated with motor and neuropsychological features of different ALS subtypes (classic, bulbar, primary lateral sclerosis, UMN-predominant, progressive muscular atrophy, flail arm, flail leg); and (iii) specific clinical features may help identify ALS subtypes, which remain localized to the site of onset for a prolonged time (regionally entrenching ALS). A single-centre, retrospective cohort of 913 Italian ALS patients was evaluated to assess correlations between directionality of the disease process after symptom onset and motor/neuropsychological phenotype. All patients underwent an extensive evaluation including the following clinical scales: Penn Upper Motor Neuron Score (PUMNS), MRC Scale for Muscle Strength and the Edinburgh Cognitive and Behavioural ALS Screen (ECAS). The most frequent initial spreading pattern was that towards adjacent horizontal regions (77.3%), which occurred preferentially in patients with lower MRC scores (P = 0.038), while vertical diffusion (21.1%) was associated with higher PUMNS (P < 0.001) and with reduced survival (P < 0.001). Non-contiguous disease spreading was associated with more severe UMN impairment (P = 0.003), while contiguous disease pattern with lower MRC scores. Furthermore, non-contiguous disease spreading was associated with more severe cognitive impairment in both executive and visuospatial ECAS domains. Individuals with regionally entrenching ALS were more frequently female (45.6% versus 36.9%; P = 0.028) and had higher frequencies of symmetric disease onset (40.3% versus 19.7%; P < 0.001) and bulbar phenotype (38.5% versus 16.4%; P < 0.001). Our study suggests that motor phenotypes characterized by a predominant UMN involvement are associated with a vertical pattern of disease progression reflecting ipsilateral spreading within the motor cortex, while those with predominant LMN involvement display more frequently a horizontal spreading from one side of the spinal cord to the other. These observations raise the hypothesis that one of the mechanisms underlying disease spreading in ALS pathology is represented by diffusion of toxic factors in the neuron microenvironment. Finally, it is possible that in our cohort, regionally entrenching ALS forms are mainly observed in patients with atypical bulbar phenotypes, characterized by a slowly progressive course and relatively benign prognosis.


Subject(s)
Amyotrophic Lateral Sclerosis , Humans , Female , Amyotrophic Lateral Sclerosis/pathology , Retrospective Studies , Motor Neurons/pathology , Phenotype , Disease Progression
4.
Cell Mol Life Sci ; 80(8): 241, 2023 Aug 05.
Article in English | MEDLINE | ID: mdl-37543540

ABSTRACT

Spinal muscular atrophy (SMA) is a neurodegenerative disorder caused by mutations in the SMN1 gene resulting in reduced levels of the SMN protein. Nusinersen, the first antisense oligonucleotide (ASO) approved for SMA treatment, binds to the SMN2 gene, paralogue to SMN1, and mediates the translation of a functional SMN protein. Here, we used longitudinal high-resolution mass spectrometry (MS) to assess both global proteome and metabolome in cerebrospinal fluid (CSF) from ten SMA type 3 patients, with the aim of identifying novel readouts of pharmacodynamic/response to treatment and predictive markers of treatment response. Patients had a median age of 33.5 [29.5; 38.25] years, and 80% of them were ambulant at time of the enrolment, with a median HFMSE score of 37.5 [25.75; 50.75]. Untargeted CSF proteome and metabolome were measured using high-resolution MS (nLC-HRMS) on CSF samples obtained before treatment (T0) and after 2 years of follow-up (T22). A total of 26 proteins were found to be differentially expressed between T0 and T22 upon VSN normalization and LIMMA differential analysis, accounting for paired replica. Notably, key markers of the insulin-growth factor signaling pathway were upregulated after treatment together with selective modulation of key transcription regulators. Using CombiROC multimarker signature analysis, we suggest that detecting a reduction of SEMA6A and an increase of COL1A2 and GRIA4 might reflect therapeutic efficacy of nusinersen. Longitudinal metabolome profiling, analyzed with paired t-Test, showed a significant shift for some aminoacid utilization induced by treatment, whereas other metabolites were largely unchanged. Together, these data suggest perturbation upon nusinersen treatment still sustained after 22 months of follow-up and confirm the utility of CSF multi-omic profiling as pharmacodynamic biomarker for SMA type 3. Nonetheless, validation studies are needed to confirm this evidence in a larger sample size and to further dissect combined markers of response to treatment.


Subject(s)
Multiomics , Muscular Atrophy, Spinal , Humans , Retrospective Studies , Follow-Up Studies , Proteome , Muscular Atrophy, Spinal/drug therapy , Muscular Atrophy, Spinal/genetics , Muscular Atrophy, Spinal/metabolism
5.
BMC Neurol ; 23(1): 165, 2023 Apr 24.
Article in English | MEDLINE | ID: mdl-37095452

ABSTRACT

BACKGROUND: Mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes (MELAS) syndrome is a systemic disorder in which multi-organ dysfunction may occur from mitochondrial metabolism failure. Maternally inherited mutations in the MT-TL1 gene are the most frequent causes for this disorder. Clinical manifestations may include stroke-like episodes, epilepsy, dementia, headache and myopathy. Among these, acute visual failure, usually in association with cortical blindness, can occur because of stroke-like episodes affecting the occipital cortex or the visual pathways. Vision loss due to optic neuropathy is otherwise considered a typical manifestation of other mitochondrial diseases such as Leber hereditary optic neuropathy (LHON). CASE PRESENTATION: Here we describe a 55-year-old woman, sister of a previously described patient with MELAS harbouring the m.3243A > G (p.0, MT-TL1) mutation, with otherwise unremarkable medical history, that presented with subacute, painful visual impairment of one eye, accompanied by proximal muscular pain and headache. Over the next weeks, she developed severe and progressive vision loss limited to one eye. Ocular examination confirmed unilateral swelling of the optic nerve head; fluorescein angiography showed segmental perfusion delay in the optic disc and papillary leakage. Neuroimaging, blood and CSF examination and temporal artery biopsy ruled out neuroinflammatory disorders and giant cell arteritis (GCA). Mitochondrial sequencing analysis confirmed the m.3243A > G transition, and excluded the three most common LHON mutations, as well as the m.3376G > A LHON/MELAS overlap syndrome mutation. Based on the constellation of clinical symptoms and signs presented in our patient, including the muscular involvement, and the results of the investigations, the diagnosis of optic neuropathy as a stroke-like event affecting the optic disc was performed. L-arginine and ubidecarenone therapies were started with the aim to improve stroke-like episode symptoms and prevention. The visual defect remained stable with no further progression or outbreak of new symptoms. CONCLUSIONS: Atypical clinical presentations must be always considered in mitochondrial disorders, even in well-described phenotypes and when mutational load in peripheral tissue is low. Mitotic segregation of mitochondrial DNA (mtDNA) does not allow to know the exact degree of heteroplasmy existent within different tissue, such as retina and optic nerve. Important therapeutic implications arise from a correct diagnosis of atypical presentation of mitochondrial disorders.


Subject(s)
Acidosis, Lactic , MELAS Syndrome , Optic Atrophy, Hereditary, Leber , Optic Nerve Diseases , Optic Neuropathy, Ischemic , Stroke , Female , Humans , MELAS Syndrome/genetics , Optic Neuropathy, Ischemic/complications , Mutation , Stroke/complications , Optic Nerve Diseases/complications , Optic Atrophy, Hereditary, Leber/genetics , DNA, Mitochondrial/genetics , Vision Disorders/complications , Headache/complications
6.
Cell Mol Life Sci ; 79(3): 189, 2022 Mar 14.
Article in English | MEDLINE | ID: mdl-35286466

ABSTRACT

Amyotrophic lateral sclerosis (ALS) is a rare neurodegenerative disorder characterized by progressive degeneration of motor neurons (MNs). Most cases are sporadic, whereas 10% are familial. The pathological mechanisms underlying the disease are partially understood, but it is increasingly being recognized that alterations in RNA metabolism and deregulation of microRNA (miRNA) expression occur in ALS. In this study, we performed miRNA expression profile analysis of iPSC-derived MNs and related exosomes from familial patients and healthy subjects. We identified dysregulation of miR-34a, miR-335 and miR-625-3p expression in both MNs and exosomes. These miRNAs regulate genes and pathways which correlate with disease pathogenesis, suggesting that studying miRNAs deregulation can contribute to deeply investigate the molecular mechanisms underlying the disease. We also assayed the expression profile of these miRNAs in the cerebrospinal fluid (CSF) of familial (fALS) and sporadic patients (sALS) and we identified a significant dysregulation of miR-34a-3p and miR-625-3p levels in ALS compared to controls. Taken together, all these findings suggest that miRNA analysis simultaneously performed in different human biological samples could represent a promising molecular tool to understand the etiopathogenesis of ALS and to develop new potential miRNA-based strategies in this new propitious therapeutic era.


Subject(s)
Amyotrophic Lateral Sclerosis/genetics , Exosomes/genetics , Induced Pluripotent Stem Cells/physiology , MicroRNAs/genetics , Motor Neurons/physiology , Amyotrophic Lateral Sclerosis/cerebrospinal fluid , Amyotrophic Lateral Sclerosis/pathology , Case-Control Studies , Cell Communication/genetics , Cells, Cultured , Gene Expression Regulation , Humans , Induced Pluripotent Stem Cells/cytology , Motor Neurons/pathology
7.
J Cell Mol Med ; 26(17): 4678-4685, 2022 09.
Article in English | MEDLINE | ID: mdl-35880500

ABSTRACT

Becker muscular dystrophy (BMD) is an X-linked neuromuscular disorder due to mutation in the DMD gene, encoding dystrophin. Despite a wide clinical variability, BMD is characterized by progressive muscle degeneration and proximal muscle weakness. Interestingly, a dysregulated expression of muscle-specific microRNAs (miRNAs), called myomirs, has been found in patients affected with muscular dystrophies, although few studies have been conducted in BMD. We analysed the serum expression levels of a subset of myomirs in a cohort of 29 ambulant individuals affected by BMD and further classified according to the degree of alterations at muscle biopsy and in 11 age-matched healthy controls. We found a significant upregulation of serum miR-1, miR-133a, miR-133b and miR-206 in our cohort of BMD patients, supporting the role of these miRNAs in the pathophysiology of the disease, and we identified serum cut-off levels discriminating patients from healthy controls, confiming the potential of circulating miRNAs as promising noninvasive biomarkers. Moreover, serum levels of miR-133b were found to be associated with fibrosis at muscle biopsy and with patients' motor performances, suggesting that miR-133b might be a useful prognostic marker for BMD patients. Taken together, our data showed that these serum myomirs may represent an effective tool that may support stratification of BMD patients, providing the opportunity of both monitoring disease progression and assessing the treatment efficacy in the context of clinical trials.


Subject(s)
Circulating MicroRNA , MicroRNAs , Muscular Dystrophy, Duchenne , Biomarkers , Disease Progression , Humans , MicroRNAs/genetics , Muscular Dystrophy, Duchenne/diagnosis , Muscular Dystrophy, Duchenne/genetics , Muscular Dystrophy, Duchenne/metabolism
8.
Cell Mol Life Sci ; 78(2): 561-572, 2021 Jan.
Article in English | MEDLINE | ID: mdl-32803397

ABSTRACT

Extracellular vesicles (EVs) are small reservoirs of different molecules and important mediators of cell-to-cell communication. As putative vehicles of misfolded protein propagation between cells, they have drawn substantial attention in the field of amyotrophic lateral sclerosis (ALS) and other neurodegenerative disorders. Moreover, exosome-mediated non-coding RNA delivery may play a crucial role in ALS, given the relevance of RNA homeostasis in disease pathogenesis. Since EVs can enter the systemic circulation and are easily detectable in patients' biological fluids, they have generated broad interest both as diagnostic and prognostic biomarkers and as valuable tools in understanding disease pathogenesis. Here, after a brief introduction on biogenesis and functions of EVs, we aim to investigate their role in neurodegenerative disorders, especially ALS. Specifically, we focus on the main findings supporting EV-mediated protein and RNA transmission in ALS in vitro and in vivo models. Then, we provide an overview of clinical applications of EVs, summarizing the most relevant studies able to detect EVs in blood and cerebrospinal fluid (CSF) of ALS patients, underlying their potential use in aiding diagnosis and prognosis. Finally, we explore the therapeutic applications of EVs in ALS, either as targets or as vehicles of proteins, nucleic acids and molecular drugs.


Subject(s)
Amyotrophic Lateral Sclerosis/pathology , Extracellular Vesicles/pathology , Amyotrophic Lateral Sclerosis/diagnosis , Amyotrophic Lateral Sclerosis/metabolism , Animals , Biomarkers/metabolism , Extracellular Vesicles/metabolism , Humans , Protein Folding , Proteins/metabolism , RNA/metabolism
9.
J Cell Mol Med ; 25(8): 3765-3771, 2021 04.
Article in English | MEDLINE | ID: mdl-33609080

ABSTRACT

Motor neuron disease (MND) is a rare group of disorders characterized by degeneration of motor neurons (MNs). The most common form of MND, amyotrophic lateral sclerosis (ALS), is an incurable disease with a variable rate of progression. The search of robust biomarkers able to discriminate among different ALS forms is paramount to properly stratify patients, and to identify those who could most likely benefit from experimental therapies. Phosphorylated-neurofilament heavy chain (p-NfH) and neurofilament light chain (NfL) are neuron-specific components of the cytoskeleton and may represent reliable markers of neuronal injury in neurological disorders. In this study, we described our cohort of ALS patients in order to investigate whether and how cerebrospinal fluid (CSF) p-NfH and NfL levels may reflect progression rate, MN involvement and the extent of neurodegeneration. CSF p-NfH and NfL were significantly increased in ALS compared with healthy and disease controls, including patients with other forms of MND, and were higher in patients with more aggressive disease course, reflecting progression rate. We also evaluated neurofilament diagnostic accuracy in our centre, identifying with high sensitivity and 100% specificity cut-off values of 0.652 ng/mL for CSF p-NfH (P < .0001) and of 1261 pg/mL for NfL (P < .0001) in discriminating ALS from healthy controls. CSF neurofilaments were significantly correlated with ALS progression rate. Overall, CSF neurofilaments appear to reflect the burden of neurodegeneration in MND and represent reliable diagnostic and prognostic biomarkers in ALS.


Subject(s)
Amyotrophic Lateral Sclerosis/diagnosis , Biomarkers/cerebrospinal fluid , Cerebrospinal Fluid/metabolism , Intermediate Filaments/metabolism , Motor Neuron Disease/diagnosis , Neurofilament Proteins/cerebrospinal fluid , Aged , Amyotrophic Lateral Sclerosis/cerebrospinal fluid , Case-Control Studies , Cross-Sectional Studies , Disease Progression , Female , Follow-Up Studies , Humans , Male , Motor Neuron Disease/cerebrospinal fluid , Phosphorylation , Prognosis
10.
Muscle Nerve ; 64(4): 474-482, 2021 10.
Article in English | MEDLINE | ID: mdl-34296433

ABSTRACT

INTRODUCTION: /AIMS: Patients with neuromuscular disorders (NMDs), including many elderly, immunosuppressed, and disabled individuals, may have been particularly affected during the coronavirus disease 2019 (COVID-19) pandemic in Lombardy, a COVID-19 high-incidence area between February and May 2020. We aimed to evaluate the effects of the COVID-19 pandemic on the quality of life (QoL) and perceived disease burden of this group of patients. METHODS: We conducted a cross-sectional phone-based survey study between June 1 and June 14, 2020, on a sample of 240 NMD patients followed at our clinic in Milan, Italy. We asked about perceived NMD burden and QoL before and during the COVID-19 pandemic. We collected responses on access to outpatient care and ancillary services. We investigated the presence of symptoms suggestive of COVID-19 infection and confirmed cases. RESULTS: We collected 205 responses: 53 patients (25.9%) reported a subjective worsening of the underlying NMD. QoL measures showed a significant worsening between pre and pandemic time frames (odds ratio, 2.14 95%; confidence interval, 1.82-2.51). Outpatient visits were postponed in more than half of cases (57.1%), with 104 patients (50.7%) experiencing a cancellation of scheduled diagnostic tests. 79 patients (38.5%) reported at least one symptom attributable to COVID-19 infection. Among the 10 patients tested with nasopharyngeal swabs, 6 tested positive and 3 died from respiratory failure, including 2 patients on corticosteroid/ immunosuppressive therapy. DISCUSSION: The COVID-19 pandemic affected QoL and limited access to outpatient care and ancillary services of NMD patients in Lombardy between February and May 2020.


Subject(s)
COVID-19/epidemiology , COVID-19/psychology , Neuromuscular Diseases/epidemiology , Neuromuscular Diseases/psychology , Quality of Life/psychology , Adult , Aged , Aged, 80 and over , COVID-19/diagnosis , Cross-Sectional Studies , Female , Humans , Italy/epidemiology , Male , Middle Aged , Neuromuscular Diseases/diagnosis , Surveys and Questionnaires
11.
J Cell Mol Med ; 24(5): 3034-3039, 2020 03.
Article in English | MEDLINE | ID: mdl-32032473

ABSTRACT

The antisense oligonucleotide Nusinersen has been recently licensed to treat spinal muscular atrophy (SMA). Since SMA type 3 is characterized by variable phenotype and milder progression, biomarkers of early treatment response are urgently needed. We investigated the cerebrospinal fluid (CSF) concentration of neurofilaments in SMA type 3 patients treated with Nusinersen as a potential biomarker of treatment efficacy. The concentration of phosphorylated neurofilaments heavy chain (pNfH) and light chain (NfL) in the CSF of SMA type 3 patients was evaluated before and after six months since the first Nusinersen administration, performed with commercially available enzyme-linked immunosorbent assay (ELISA) kits. Clinical evaluation of SMA patients was performed with standardized motor function scales. Baseline neurofilament levels in patients were comparable to controls, but significantly decreased after six months of treatment, while motor functions were only marginally ameliorated. No significant correlation was observed between the change in motor functions and that of neurofilaments over time. The reduction of neurofilament levels suggests a possible early biochemical effect of treatment on axonal degeneration, which may precede changes in motor performance. Our study mandates further investigations to assess neurofilaments as a marker of treatment response.


Subject(s)
Neurofilament Proteins/cerebrospinal fluid , Oligonucleotides, Antisense/administration & dosage , Oligonucleotides/administration & dosage , Spinal Muscular Atrophies of Childhood/drug therapy , Adolescent , Adult , Age of Onset , Aged , Biomarkers/cerebrospinal fluid , Child, Preschool , Female , Humans , Intermediate Filaments/metabolism , Male , Middle Aged , Oligonucleotides/adverse effects , Oligonucleotides, Antisense/adverse effects , Spinal Muscular Atrophies of Childhood/cerebrospinal fluid , Spinal Muscular Atrophies of Childhood/pathology , Treatment Outcome
12.
Transpl Infect Dis ; 22(1): e13236, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31868290

ABSTRACT

In this case report, we describe the first PCR-confirmed case of HSV2 myeloradiculitis with a purely motor presentation, occurring in a 68-year-old liver transplant recipient. The patient reported ascending weakness with no sensory nor sphincteric symptoms, thereby resembling acute demyelinating inflammatory neuropathy, or Guillain-Barré syndrome. HSV2 was detected in cerebrospinal fluid by PCR, and the patient was successfully treated with intravenous Acyclovir.


Subject(s)
Guillain-Barre Syndrome/virology , Herpes Simplex/cerebrospinal fluid , Liver Transplantation/adverse effects , Acyclovir/therapeutic use , Aged , Antiviral Agents/therapeutic use , Herpes Simplex/drug therapy , Herpesvirus 2, Human , Humans , Male , Treatment Outcome
13.
J Cell Mol Med ; 23(3): 1647-1656, 2019 03.
Article in English | MEDLINE | ID: mdl-30614179

ABSTRACT

Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disorder affecting upper and lower motor neurons (MNs), resulting in paralysis and precocious death from respiratory failure. Although the causes of ALS are incompletely understood, the role of alterations in RNA metabolism seems central. MicroRNAs (miRNAs) are noncoding RNAs implicated in the regulation of gene expression of many relevant physiological processes, including cell death. The recent model of programmed cell death (PCD) encompasses different mechanisms, from apoptosis to regulated necrosis (RN), in particular necroptosis. Both apoptosis and necroptosis play a significant role in the progressive death of MNs in ALS. In this review, we present key research related to miRNAs that modulate apoptosis and RN pathways in ALS. We also discuss whether these miRNAs represent potential targets for therapeutic development in patients.


Subject(s)
Amyotrophic Lateral Sclerosis/pathology , Apoptosis , MicroRNAs/genetics , Motor Neurons/pathology , Necrosis , Amyotrophic Lateral Sclerosis/genetics , Animals , Humans
14.
Int J Mol Sci ; 20(17)2019 Aug 25.
Article in English | MEDLINE | ID: mdl-31450699

ABSTRACT

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder affecting upper and lower motor neurons (MNs) that still lacks an efficacious therapy. The failure of recent therapeutic trials in ALS, other than depending on the poor knowledge of pathogenic mechanisms responsible for MNs loss, is largely due to diagnostic delay and the lack of reliable biomarkers for diagnosis, prognosis and response to pharmacologic intervention. Neurofilaments (Nfs) are neuron-specific cytoskeletal proteins, whose levels increased in biological fluids proportionally to the degree of axonal damage, both in normal and in pathologic conditions, representing potential biomarkers in various neurological disorders, such as motor neuron disorder (MND). Growing evidence has shown that phosphorylated neurofilaments heavy chain (p-NfH) and neurofilaments light chain (NfL) are increased in blood and cerebrospinal fluid (CSF) of ALS patients compared to healthy and neurological controls and are found to correlate with disease progression. In this review, we reported the most relevant studies investigating the diagnostic and prognostic role of Nfs in ALS. Given their reliability and reproducibility, we consider Nfs as promising and useful biomarkers in diagnosis of MND, early patient identification for inclusion in clinical trials, prediction of disease progression, and response to pharmacological intervention, and we suggest the validation of their measurement in clinical activity.


Subject(s)
Amyotrophic Lateral Sclerosis/diagnosis , Amyotrophic Lateral Sclerosis/metabolism , Biomarkers/blood , Biomarkers/cerebrospinal fluid , Intermediate Filaments/metabolism , Humans , Neurofilament Proteins/blood , Neurofilament Proteins/cerebrospinal fluid , Phosphorylation , Prognosis
15.
BMC Neurol ; 18(1): 220, 2018 Dec 27.
Article in English | MEDLINE | ID: mdl-30591017

ABSTRACT

BACKGROUND: Leber's hereditary optic neuropathy (LHON) is a mitochondrial disease characterized by visual loss consequent to optic nerve atrophy. In some cases, LHON is associated with heterogeneous neurological extraocular manifestations and is referred to as "Leber plus disease"; rarely it is associated with a multiple sclerosis (MS)-like syndrome known as Harding disease, but no pediatric extraocular acute spinal onset is reported. CASE PRESENTATION: We describe the case of a 5-year-old girl carrying the G3460A mtDNA mutation who was referred to clinical examination for bilateral upper and lower limb weakness with no sign of optic neuropathy. Spinal cord MRI showed hyperintense signal alterations in T2-weighted and restricted diffusion in DWI sequences in the anterior portion of the cervical and dorsal spinal cord resembling a spinal cord vascular injury. No association between this mutation and pediatric spinal cord lesions has previously been reported. Alternative diagnostic hypotheses, including infective, ischemic and inflammatory disorders, were not substantiated by clinical and instrumental investigations. CONCLUSIONS: Our case reports a novel pediatric clinical manifestation associated with the m.3460G > A mtDNA mutation, broadening the clinical spectrum of this disease. Early identification of new cases and monitoring of carriers beginning in childhood is important to prevent neurological deterioration and preserve long-term function.


Subject(s)
Optic Atrophy, Hereditary, Leber/genetics , Spinal Cord/pathology , Vision Disorders/etiology , Child, Preschool , DNA, Mitochondrial/genetics , Female , Humans , Magnetic Resonance Imaging , Mutation
16.
Radiology ; 283(2): 515-525, 2017 05.
Article in English | MEDLINE | ID: mdl-27924721

ABSTRACT

Purpose To investigate the structural brain connectome in patients with Parkinson disease (PD) and mild cognitive impairment (MCI) and in patients with PD without MCI. Materials and Methods This prospective study was approved by the local ethics committees, and written informed consent was obtained from all subjects prior to enrollment. The individual structural brain connectome of 170 patients with PD (54 with MCI, 116 without MCI) and 41 healthy control subjects was obtained by using deterministic diffusion-tensor tractography. A network-based statistic was used to assess structural connectivity differences among groups. Results Patients with PD and MCI had global network alterations when compared with both control subjects and patients with PD without MCI (range, P = .004 to P = .048). Relative to control subjects, patients with PD and MCI had a large basal ganglia and frontoparietal network with decreased fractional anisotropy (FA) in the right hemisphere and a subnetwork with increased mean diffusivity (MD) involving similar regions bilaterally (P < .01). When compared with patients with PD without MCI, those with PD and MCI had a network with decreased FA, including basal ganglia and frontotemporoparietal regions bilaterally (P < .05). Similar findings were obtained by adjusting for motor disability (P < .05, permutation-corrected P = .06). At P < .01, patients with PD and MCI did not show network alterations relative to patients with PD without MCI. Network FA and MD values were used to differentiate patients with PD and MCI from healthy control subjects and patients with PD without MCI with fair to good accuracy (cross-validated area under the receiver operating characteristic curve [principal + secondary connected components] range, 0.75-0.85). Conclusion A disruption of structural connections between brain areas forming a network contributes to determine an altered information integration and organization and thus cognitive deficits in patients with PD. These results provide novel information concerning the structural substrates of MCI in patients with PD and may offer markers that can be used to differentiate between patients with PD and MCI and patients with PD without MCI. © RSNA, 2016 Online supplemental material is available for this article.


Subject(s)
Brain/pathology , Cognitive Dysfunction/pathology , Connectome/methods , Diffusion Tensor Imaging/methods , Parkinson Disease/pathology , White Matter/pathology , Adult , Aged , Aged, 80 and over , Brain/diagnostic imaging , Cognitive Dysfunction/diagnostic imaging , Cognitive Dysfunction/etiology , Female , Humans , Image Interpretation, Computer-Assisted/methods , Male , Middle Aged , Nerve Net/diagnostic imaging , Nerve Net/pathology , Parkinson Disease/diagnostic imaging , Parkinson Disease/etiology , Reproducibility of Results , Sensitivity and Specificity , White Matter/diagnostic imaging
17.
Ann Clin Transl Neurol ; 11(5): 1090-1096, 2024 May.
Article in English | MEDLINE | ID: mdl-38600653

ABSTRACT

OBJECTIVES: Mandatory newborn screening (NBS) for spinal muscular atrophy (SMA) was implemented for the first time in Italy at the end of 2021, allowing the identification and treatment of patients at an asymptomatic stage. METHODS: DNA samples extracted from dried blood spot (DBS) from newborns in Apulia region were analysed for SMA screening by using a real-time PCR-based assay. Infants harbouring homozygous deletion of SMN1 exon 7 confirmed by diagnostic molecular tests underwent clinical and neurophysiological assessment and received a timely treatment. RESULTS: Over the first 20 months since regional NBS introduction, four out of 42,492 (0.009%) screened children were found to carry a homozygous deletion in the exon 7 of SMN1 gene, with an annual incidence of 1:10,623. No false negatives were present. Median age at diagnosis was 7 days and median age at treatment was 20.5 days. Three of them had two copies of SMN2 and received gene therapy, while the one with three SMN2 copies was treated with nusinersen. All but one were asymptomatic at birth, showed no clinical signs of disease after a maximum follow-up of 16 months and reached motor milestones appropriate with their age. The minimum interval between diagnosis and the treatment initiation was 9 days. INTERPRETATION: The timely administration of disease-modifying therapies prevented presymptomatic subjects to develop disease symptoms. Mandatory NBS for SMA should be implemented on a national scale.


Subject(s)
Muscular Atrophy, Spinal , Neonatal Screening , Survival of Motor Neuron 1 Protein , Humans , Italy , Infant, Newborn , Muscular Atrophy, Spinal/diagnosis , Muscular Atrophy, Spinal/genetics , Muscular Atrophy, Spinal/therapy , Survival of Motor Neuron 1 Protein/genetics , Female , Male , Survival of Motor Neuron 2 Protein/genetics , Oligonucleotides/administration & dosage , Oligonucleotides/pharmacology , Infant
18.
Sci Rep ; 13(1): 3187, 2023 02 23.
Article in English | MEDLINE | ID: mdl-36823368

ABSTRACT

Repeat expansions in genes other than C9orf72 and ATXN2 have been recently associated with Amyotrophic Lateral Sclerosis (ALS). Indeed, an abnormal number of GGC repeats in NOTCH2NLC has been recently reported in 0.7% of sporadic ALS patients from mainland China. This finding was not confirmed in an ALS cohort of subjects from Taiwan. As the involvement of expanded NOTCH2NLC alleles in ALS is debated, we addressed this point by evaluating NOTCH2NLC repeat expansions in an Italian cohort of ALS patients. A screening analysis of NOTCH2NLC GGC repeats was performed by repeat-primed polymerase chain reaction (RP-PCR) in a cohort of 385 probable/definite ALS Italian patients. Mean age at onset was 60.5 years (SD 13.7), and 60.9% were males. Sporadic cases were 357 (92.7%), and most patients had a spinal onset (71.8%). None of our patients showed the typical sawtooth tail pattern on RP-PCR, thus excluding abnormal repeat expansion in NOTCH2NLC. Overall, we suggest that NOTCH2NLC expanded alleles might be absent or at least extremely rare in ALS Italian patients. Further investigations in larger cohorts with different ethnic backgrounds are required to support the involvement of NOTCH2NLC in ALS.


Subject(s)
Amyotrophic Lateral Sclerosis , Intercellular Signaling Peptides and Proteins , Nerve Tissue Proteins , Female , Humans , Male , Middle Aged , Alleles , Amyotrophic Lateral Sclerosis/genetics , C9orf72 Protein/genetics , China , Italy , Taiwan , Intercellular Signaling Peptides and Proteins/genetics , Nerve Tissue Proteins/genetics
19.
Biomedicines ; 11(5)2023 Apr 23.
Article in English | MEDLINE | ID: mdl-37238925

ABSTRACT

Spinal muscular atrophy (SMA) is a neuromuscular disease resulting from mutations or deletions in SMN1 that lead to progressive death of alpha motor neurons, ultimately leading to severe muscle weakness and atrophy, as well as premature death in the absence of treatment. Recent approval of SMN-increasing medications as SMA therapy has altered the natural course of the disease. Thus, accurate biomarkers are needed to predict SMA severity, prognosis, drug response, and overall treatment efficacy. This article reviews novel non-targeted omics strategies that could become useful clinical tools for patients with SMA. Proteomics and metabolomics can provide insights into molecular events underlying disease progression and treatment response. High-throughput omics data have shown that untreated SMA patients have different profiles than controls. In addition, patients who clinically improved after treatment have a different profile than those who did not. These results provide a glimpse on potential markers that could assist in identifying therapy responders, in tracing the course of the disease, and in predicting its outcome. These studies have been restricted by the limited number of patients, but the approaches are feasible and can unravel severity-specific neuro-proteomic and metabolic SMA signatures.

20.
J Neurol ; 270(1): 511-518, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36183286

ABSTRACT

INTRODUCTION: Even if electromyography (EMG) is routinely used to confirm the diagnosis of amyotrophic lateral sclerosis (ALS), few studies have analysed the correlation between electrophysiological parameters and clinical characteristics of ALS. We assessed if the quantification of active denervation (AD) and chronic denervation (CD) provides clinicians with information about phenotype, disease progression and survival in ALS patients. METHODS: We studied a cohort of 689 ALS patients recording the following parameters: age and site of onset, survival, MRC scale for muscle strength evaluation, burden of upper and lower motor signs as measured with specific scales (PUMNS and LMNS, respectively), ALSFRS-R, progression rate (ΔFS), MITOS and King's Staging systems (KSS). We performed EMG on 11 muscles, and calculated semiquantitative AD and CD scores for each limb, as well as for the bulbar and spinal regions. RESULTS: We found a positive correlation between AD and CD scores with LMNS (respectively p = 4.4 × 10-37 and p = 2.8 × 10-45) and a negative correlation with MRC (respectively p = 4.5 × 10-35 and p = 3.0 × 10-35). Furthermore, patients with higher spinal AD and CD scores had significantly lower ALSFRS-R scores, and higher KSS and MITOS stages. Conversely, only AD was associated to higher ΔFS (p = 1.0 × 10-6) and shorter survival (p = 1.1 × 10-5). CONCLUSION: Our results confirmed that EMG examination represents not only a diagnostic instrument, but also a prognostic tool. In this context, AD seems to be a reliable predictor of disease's progression and survival while CD better describes functional disability.


Subject(s)
Amyotrophic Lateral Sclerosis , Humans , Amyotrophic Lateral Sclerosis/diagnosis , Disease Progression , Prognosis , Electromyography , Phenotype
SELECTION OF CITATIONS
SEARCH DETAIL