Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Proc Natl Acad Sci U S A ; 107(31): 13582-7, 2010 Aug 03.
Article in English | MEDLINE | ID: mdl-20643966

ABSTRACT

Förster resonance energy transfer (FRET) with fluorescent proteins permits high spatial resolution imaging of protein-protein interactions in living cells. However, substantial non-FRET fluorescence background can obscure small FRET signals, making many potential interactions unobservable by conventional FRET techniques. Here we demonstrate time-resolved microscopy of luminescence resonance energy transfer (LRET) for live-cell imaging of protein-protein interactions. A luminescent terbium complex, TMP-Lumi4, was introduced into cultured cells using two methods: (i) osmotic lysis of pinocytic vesicles; and (ii) reversible membrane permeabilization with streptolysin O. Upon intracellular delivery, the complex was observed to bind specifically and stably to transgenically expressed Escherichia coli dihydrofolate reductase (eDHFR) fusion proteins. LRET between the eDHFR-bound terbium complex and green fluorescent protein (GFP) was detected as long-lifetime, sensitized GFP emission. Background signals from cellular autofluorescence and directly excited GFP fluorescence were effectively eliminated by imposing a time delay (10 micros) between excitation and detection. Background elimination made it possible to detect interactions between the first PDZ domain of ZO-1 (fused to eDHFR) and the C-terminal YV motif of claudin-1 (fused to GFP) in single microscope images at subsecond time scales. We observed a highly significant (P<10(-6)), six-fold difference between the mean, donor-normalized LRET signal from cells expressing interacting fusion proteins and from control cells expressing noninteracting mutants. The results show that time-resolved LRET microscopy with a selectively targeted, luminescent terbium protein label affords improved speed and sensitivity over conventional FRET methods for a variety of live-cell imaging and screening applications.


Subject(s)
Fluorescence Resonance Energy Transfer/methods , Microscopy, Fluorescence/methods , Proteins/analysis , Animals , Cell Line , Cell Survival , Dogs , Mice , Protein Binding , Proteins/metabolism , Time Factors
2.
Cytometry A ; 77(12): 1113-25, 2010 Dec.
Article in English | MEDLINE | ID: mdl-20824630

ABSTRACT

Time-resolved luminescence (TRL) microscopy can image signals from lanthanide coordination complexes or other probes with long emission lifetimes, thereby eliminating short-lifetime (<100 ns) autofluorescence background from biological specimens. However, lanthanide complexes emit far fewer photons per unit time than conventional fluorescent probes, making it difficult to rapidly acquire high quality images at probe concentrations that are relevant to live cell experiments. This article describes the development and characterization of a TRL microscope that employs a light-emitting diode (LED, λ(em) = 365 nm) for pulsed epi-illumination and an intensified charge-coupled device (ICCD) camera for gated, widefield detection. Europium chelate-impregnated microspheres were used to evaluate instrument performance in terms of short-lifetime fluorescence background rejection, photon collection efficiency, image contrast, and signal-to-noise ratio (SNR). About 200 nm microspheres were imaged within the time resolution limit of the ICCD (66.7 ms) with complete autofluorescence suppression. About 40 nm microspheres containing ~400 chelate molecules were detected within ~1-s acquisition times. A luminescent terbium complex, Lumi4-Tb®, was introduced into the cytoplasm of cultured cells at an estimated concentration of 300 nM by the method of osmotic lysis of pinocytic vesicles. Time-resolved images of the living, terbium complex-loaded cells were acquired within acquisition times as short as 333 ms, and the effects of increased exposure time and frame summing on image contrast and SNR were evaluated. The performance analyses show that TRL microscopy is sufficiently sensitive and precise to allow high-resolution, quantitative imaging of lanthanide luminescence in living cells under physiologically relevant experimental conditions.


Subject(s)
Lanthanoid Series Elements/analysis , Luminescent Measurements/instrumentation , Luminescent Measurements/methods , Microscopy/instrumentation , Microscopy/methods , Animals , Cell Line , Dogs , Europium/analysis , Image Enhancement , Microspheres , Time Factors
3.
Eur J Pharm Biopharm ; 95(Pt B): 323-30, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26022642

ABSTRACT

Retinal vascular diseases, including diabetic retinopathy, neovascular age related macular degeneration, and retinal vein occlusion, are leading causes of blindness in the Western world. These diseases share several common disease mechanisms, including vascular endothelial growth factor (VEGF) signaling, hypoxia, and inflammation, which provide opportunities for common therapeutic strategies. Treatment of these diseases using laser therapy, anti-VEGF injections, and/or steroids has significantly improved clinical outcomes. However, these strategies do not address the underlying root causes of pathology, and may have deleterious side effects. Furthermore, many patients continue to progress toward legal blindness despite receiving regular therapy. Nanomedicine, the engineering of therapeutics at the 1-100 nm scale, is a promising approach for improving clinical management of retinal vascular diseases. Nanomedicine-based technologies have the potential to revolutionize the treatment of ophthalmology, through enabling sustained release of drugs over several months, reducing side effects due to specific targeting of dysfunctional cells, and interfacing with currently "undruggable" targets. We will discuss emerging nanomedicine-based applications for the treatment of complications associated with retinal vascular diseases, including angiogenesis and inflammation.


Subject(s)
Nanoparticles , Neovascularization, Pathologic/drug therapy , Retinal Diseases/drug therapy , Animals , Delayed-Action Preparations , Drug Delivery Systems , Drug Design , Humans , Inflammation/drug therapy , Inflammation/pathology , Inflammation/physiopathology , Nanomedicine/methods , Neovascularization, Pathologic/pathology , Neovascularization, Pathologic/physiopathology , Retinal Diseases/pathology , Retinal Diseases/physiopathology
4.
PLoS One ; 8(8): e71002, 2013.
Article in English | MEDLINE | ID: mdl-23951066

ABSTRACT

By imaging the release of a GFP-based viral content marker produced upon virus maturation, we have previously found that HIV-1 fuses with endosomes. In contrast, fusion at the cell surface did not progress beyond a lipid mixing stage (hemifusion). However, recent evidence suggesting that free GFP can be trapped within the mature HIV-1 capsid raises concerns that this content marker may not be released immediately after the formation of a fusion pore. To determine whether a significant portion of GFP is trapped in the mature capsid, we first permeabilized the viral membrane with saponin. The overwhelming majority of pseudoviruses fully released GFP while the remaining particles exhibited partial loss or no loss of content. The extent of GFP release correlated with HIV-1 maturation, implying that incomplete Gag processing, but not GFP entrapment by mature capsids, causes partial content release. Next, we designed a complementary assay for visualizing pore formation by monitoring the intraviral pH with an additional pH-sensitive fluorescent marker. The loss of GFP through saponin-mediated pores was associated with a concomitant increase in the intraviral pH due to equilibration with the pH of an external buffer. We next imaged single HIV-cell fusion and found that these events were manifested in a highly correlated loss of content and increase in the intraviral pH, as it equilibrated with the cytosolic pH. Fused or saponin-permeabilized pseudoviruses that partially lost GFP did not release the remaining content marker under conditions expected to promote the capsid dissociation. We were thus unable to detect significant entrapment of GFP by the mature HIV-1 capsid. Together, our results validate the use of the GFP-based content marker for imaging single virus fusion and inferring the sites of HIV-1 entry.


Subject(s)
Capsid/metabolism , Cell Membrane/metabolism , HIV-1/metabolism , Virion/metabolism , Virus Internalization , Animals , Capsid/chemistry , Cell Fusion , Cell Line , Cell Membrane/chemistry , Cell Membrane/virology , Chlorocebus aethiops , Endosomes/metabolism , Genes, Reporter , Green Fluorescent Proteins/metabolism , HEK293 Cells , HIV-1/chemistry , Humans , Hydrogen-Ion Concentration , Virion/chemistry , Virus Release/physiology
SELECTION OF CITATIONS
SEARCH DETAIL