Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Publication year range
1.
Mater Horiz ; 9(1): 500-508, 2022 Jan 04.
Article in English | MEDLINE | ID: mdl-34927646

ABSTRACT

Molecular doping is the key to enabling organic electronic devices, however, the design strategies to maximize doping efficiency demands further clarity and comprehension. Previous reports focus on the effect of the side chains, but the role of the backbone is still not well understood. In this study, we synthesize a series of NDI-based copolymers with bithiophene, vinylene, and acetylenic moieties (P1G, P2G, and P3G, respectively), all containing branched triethylene glycol side chains. Using computational and experimental methods, we explore the impact of the conjugated backbone using three key parameters for doping in organic semiconductors: energy levels, microstructure, and miscibility. Our experimental results show that P1G undergoes the most efficient n-type doping owed primarily to its higher dipole moment, and better host-dopant miscibility with N-DMBI. In contrast, P2G and P3G possess more planar backbones than P1G, but the lack of long-range order, and poor host-dopant miscibility limit their doping efficiency. Our data suggest that backbone planarity alone is not enough to maximize the electrical conductivity (σ) of n-type doped organic semiconductors, and that backbone polarity also plays an important role in enhancing σ via host-dopant miscibility. Finally, the thermoelectric properties of doped P1G exhibit a power factor of 0.077 µW m-1 K-2, and ultra-low in-plane thermal conductivity of 0.13 W m-1K-1 at 5 mol% of N-DMBI, which is among the lowest thermal conductivity values reported for n-type doped conjugated polymers.

2.
ACS Polym Au ; 1(1): 16-29, 2021 Aug 11.
Article in English | MEDLINE | ID: mdl-36855554

ABSTRACT

Understanding fracture mechanics of ultrathin polymeric films is crucial for modern technologies, including semiconductor and coating industries. However, up to now, the fracture behavior of sub-100 nm polymeric thin films is rarely explored due to challenges in handling samples and limited testing methods available. In this work, we report a new testing methodology that can not only visualize the evolution of the local stress distribution through wrinkling patterns and crack propagation during the deformation of ultrathin films but also directly measure their fracture energies. Using ultrathin polystyrene films as a model system, we both experimentally and computationally investigate the effect of the film thickness and molecular weight on their fracture behavior, both of which show a ductile-to-brittle transition. Furthermore, we demonstrate the broad applicability of this testing method in semicrystalline semiconducting polymers. We anticipate our methodology described here could provide new ways of studying the fracture behavior of ultrathin films under confinement.

3.
Nat Commun ; 12(1): 2347, 2021 Apr 20.
Article in English | MEDLINE | ID: mdl-33879775

ABSTRACT

Intrinsic mechanical properties of sub-100 nm thin films are markedly difficult to obtain, yet an ever-growing necessity for emerging fields such as soft organic electronics. To complicate matters, the interfacial contribution plays a major role in such thin films and is often unexplored despite supporting substrates being a main component in current metrologies. Here we present the shear motion assisted robust transfer technique for fabricating free-standing sub-100 nm films and measuring their inherent structural-mechanical properties. We compare these results to water-supported measurements, exploring two phenomena: 1) The influence of confinement on mechanics and 2) the role of water on the mechanical properties of hydrophobic films. Upon confinement, polystyrene films exhibit increased strain at failure, and reduced yield stress, while modulus is reduced only for the thinnest 19 nm film. Water measurements demonstrate subtle differences in mechanics which we elucidate using quartz crystal microbalance and neutron reflectometry.

SELECTION OF CITATIONS
SEARCH DETAIL