Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 41
Filter
1.
Angew Chem Int Ed Engl ; 62(8): e202216142, 2023 02 13.
Article in English | MEDLINE | ID: mdl-36562327

ABSTRACT

Cytotoxic immune cells, including T lymphocytes (CTLs) and natural killer (NK) cells, are essential components of the host response against tumors. CTLs and NK cells secrete granzyme A (GzmA) upon recognition of cancer cells; however, there are very few tools that can detect physiological levels of active GzmA with high spatiotemporal resolution. Herein, we report the rational design of the near-infrared fluorogenic substrates for human GzmA and mouse GzmA. These activity-based probes display very high catalytic efficiency and selectivity over other granzymes, as shown in tissue lysates from wild-type and GzmA knock-out mice. Furthermore, we demonstrate that the probes can image how adaptive immune cells respond to antigen-driven recognition of cancer cells in real time.


Subject(s)
Fluorescent Dyes , T-Lymphocytes, Cytotoxic , Animals , Humans , Mice , Granzymes , Killer Cells, Natural , Mice, Knockout
2.
Infect Immun ; 89(9): e0066520, 2021 08 16.
Article in English | MEDLINE | ID: mdl-33526567

ABSTRACT

Immunotherapy has become a new paradigm in oncology, improving outcomes for several types of cancer. However, there are some aspects about its management that remain uncertain. One of the key points that needs better understanding is the interaction between immunotherapy and gut microbiome and how modulation of the microbiome might modify the efficacy of immunotherapy. Consequently, the negative impact of systemic antibiotics and corticosteroids on the efficacy of immunotherapy needs to be clarified.


Subject(s)
Adrenal Cortex Hormones/pharmacology , Anti-Bacterial Agents/pharmacology , Host Microbial Interactions , Immune Checkpoint Inhibitors/therapeutic use , Microbiota , Neoplasms/drug therapy , Probiotics , Adrenal Cortex Hormones/therapeutic use , Animals , Anti-Bacterial Agents/therapeutic use , Host Microbial Interactions/drug effects , Host Microbial Interactions/immunology , Humans , Immune Checkpoint Inhibitors/pharmacology , Immunomodulation/drug effects , Microbial Interactions/drug effects , Microbial Interactions/immunology , Microbiota/drug effects , Neoplasms/etiology , Treatment Outcome
3.
Part Fibre Toxicol ; 14(1): 41, 2017 10 26.
Article in English | MEDLINE | ID: mdl-29073907

ABSTRACT

BACKGROUND: The special physicochemical properties of gold nanoprisms make them very useful for biomedical applications including biosensing and cancer therapy. However, it is not clear how gold nanoprisms may affect cellular physiology including viability and other critical functions. We report a multiparametric investigation on the impact of gold-nanoprisms on mice and human, transformed and primary cells as well as tissue distribution and toxicity in vivo after parental injection. METHODS: Cellular uptake of the gold-nanoprisms (NPRs) and the most crucial parameters of cell fitness such as generation of reactive oxygen species (ROS), mitochondria membrane potential, cell morphology and apoptosis were systematically assayed in cells. Organ distribution and toxicity including inflammatory response were analysed in vivo in mice at 3 days or 4 months after parental administration. RESULTS: Internalized gold-nanoprisms have a significant impact in cell morphology, mitochondrial function and ROS production, which however do not affect the potential of cells to proliferate and form colonies. In vivo NPRs were only detected in spleen and liver at 3 days and 4 months after administration, which correlated with some changes in tissue architecture. However, the main serum biochemical markers of organ damage and inflammation (TNFα and IFNγ) remained unaltered even after 4 months. In addition, animals did not show any macroscopic sign of toxicity and remained healthy during all the study period. CONCLUSION: Our data indicate that these gold-nanoprisms are neither cytotoxic nor cytostatic in transformed and primary cells, and suggest that extensive parameters should be analysed in different cell types to draw useful conclusions on nanomaterials safety. Moreover, although there is a tendency for the NPRs to accumulate in liver and spleen, there is no observable negative impact on animal health.


Subject(s)
Apoptosis/drug effects , Cell Proliferation/drug effects , Gold/toxicity , Metal Nanoparticles/toxicity , A549 Cells , Animals , Cell Line, Transformed , Cell Shape/drug effects , Female , Gold/administration & dosage , Gold/pharmacokinetics , HeLa Cells , Humans , Inflammation Mediators/blood , Injections, Intravenous , Interferon-gamma/blood , Male , Membrane Potential, Mitochondrial/drug effects , Metal Nanoparticles/administration & dosage , Mice, Inbred C57BL , Mitochondria/drug effects , Mitochondria/metabolism , Mitochondria/pathology , Primary Cell Culture , Reactive Oxygen Species/metabolism , Risk Assessment , Tissue Distribution , Tumor Necrosis Factor-alpha/blood
4.
Appl Microbiol Biotechnol ; 100(5): 2327-34, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26678078

ABSTRACT

Early and accurate diagnosis of invasive aspergillosis (IA) is one of the most critical steps needed to efficiently treat the infection and reduce the high mortality rates that can occur. We have previously found that the Aspergillus spp. secondary metabolite, bis(methylthio)gliotoxin (bmGT), can be detected in the serum from patients with possible/probable IA. Thus, it could be used as a diagnosis marker of the infection. However, there is no data available concerning the sensitivity, specificity and performance of bmGT to detect the infection. Here, we have performed a prospective study comparing bmGT detection with galactomannan (GM), the most frequently used and adopted approach for IA diagnosis, in 357 sera from 90 episodes of patients at risk of IA. Our results, involving 79 patients that finally met inclusion criteria, suggest that bmGT presents higher sensitivity and positive predictive value (PPV) than GM and similar specificity and negative predictive value (NPV). Importantly, the combination of GM and bmGT increased the PPV (100 %) and NPV (97.5 %) of the individual biomarkers, demonstrating its potential utility in empirical antifungal treatment guidance and withdrawal. These results indicate that bmGT could be a good biomarker candidate for IA diagnosis and, in combination with GM, could result in highly specific diagnosis of IA and management of patients at risk of infection.


Subject(s)
Biomarkers/blood , Gliotoxin/analogs & derivatives , Invasive Pulmonary Aspergillosis/diagnosis , Aged , Aged, 80 and over , Female , Galactose/analogs & derivatives , Gliotoxin/blood , Humans , Male , Mannans/blood , Middle Aged , Predictive Value of Tests , Prospective Studies , Sensitivity and Specificity
5.
ACS Pharmacol Transl Sci ; 7(5): 1474-1484, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38751645

ABSTRACT

Granzymes (Gzms), a family of serine proteases, expressed by immune and nonimmune cells, present perforin-dependent and independent intracellular and extracellular functions. When released in the extracellular space, GzmA, with trypsin-like activity, is involved in the pathophysiology of different inflammatory diseases. However, there are no validated specific systems to detect active forms of extracellular GzmA, making it difficult to assess its biological relevance and potential use as a biomarker. Here, we have developed fluorescence-energy resonance-transfer (FRET)-based peptide probes (FAM-peptide-DABCYL) to specifically detect GzmA activity in tissue samples and biological fluids in both mouse and human samples during inflammatory diseases. An initial probe was developed and incubated with GzmA and different proteases like GzmB and others with similar cleavage specificity as GzmA like GzmK, thrombin, trypsin, kallikrein, or plasmin. After measuring fluorescence, the probe showed very good specificity and sensitivity for human and mouse GzmA when compared to GzmB, its closest homologue GzmK, and with thrombin. The specificity of this probe was further refined by incubating the samples in a coated plate with a GzmA-specific antibody before adding the probe. The results show a high specific detection of soluble GzmA even when compared with other soluble proteases with very similar cleavage specificity like thrombin, GzmK, trypsin, kallikrein, or plasmin, which shows nearly no fluorescence signal. The high specific detection of GzmA was validated, showing that using pure proteins and serum and tissue samples from GzmA-deficient mice presented a significant reduction in the signal compared with WT mice. The utility of this system in humans was confirmed, showing that GzmA activity was significantly higher in serum samples from septic patients in comparison with healthy donors. Our results present a new immunoprobe with utility to detect extracellular GzmA activity in different biological fluids, confirming the presence of active forms of the soluble protease in vivo during inflammatory and infectious diseases.

6.
Sci Rep ; 14(1): 4395, 2024 02 22.
Article in English | MEDLINE | ID: mdl-38388659

ABSTRACT

Self-assembling peptides (SAPs) have gained significant attention in biomedicine because of their unique properties and ability to undergo molecular self-assembly driven by non-covalent interactions. By manipulating their composition and structure, SAPs can form well-ordered nanostructures with enhanced selectivity, stability and biocompatibility. SAPs offer advantages such as high chemical and biological diversity and the potential for functionalization. However, studies concerning its potentially toxic effects are very scarce, a limitation that compromises its potential translation to humans. This study investigates the potentially toxic effects of six different SAP formulations composed of natural amino acids designed for nervous tissue engineering and amenable to ready cross-linking boosting their biomechanical properties. All methods were performed in accordance with the relevant guidelines and regulations. A wound-healing assay was performed to evaluate how SAPs modify cell migration. The results in vitro demonstrated that SAPs did not induce genotoxicity neither skin sensitization. In vivo, SAPs were well-tolerated without any signs of acute systemic toxicity. Interestingly, SAPs were found to promote the migration of endothelial, macrophage, fibroblast, and neuronal-like cells in vitro, supporting a high potential for tissue regeneration. These findings contribute to the development and translation of SAP-based biomaterials for biomedical applications.


Subject(s)
Nanostructures , Peptides , Humans , Peptides/chemistry , Tissue Engineering/methods , Neurons , Biocompatible Materials/pharmacology , Biocompatible Materials/chemistry , Nanostructures/chemistry
7.
Front Immunol ; 15: 1289303, 2024.
Article in English | MEDLINE | ID: mdl-38352878

ABSTRACT

Immunotherapy treatments aim to modulate the host's immune response to either mitigate it in inflammatory/autoimmune disease or enhance it against infection or cancer. Among different immunotherapies reaching clinical application during the last years, chimeric antigen receptor (CAR) immunotherapy has emerged as an effective treatment for cancer where different CAR T cells have already been approved. Yet their use against infectious diseases is an area still relatively poorly explored, albeit with tremendous potential for research and clinical application. Infectious diseases represent a global health challenge, with the escalating threat of antimicrobial resistance underscoring the need for alternative therapeutic approaches. This review aims to systematically evaluate the current applications of CAR immunotherapy in infectious diseases and discuss its potential for future applications. Notably, CAR cell therapies, initially developed for cancer treatment, are gaining recognition as potential remedies for infectious diseases. The review sheds light on significant progress in CAR T cell therapy directed at viral and opportunistic fungal infections.


Subject(s)
Communicable Diseases , Neoplasms , Receptors, Chimeric Antigen , Humans , Immunotherapy , Immunotherapy, Adoptive , Neoplasms/therapy , Communicable Diseases/therapy
8.
Angew Chem Weinheim Bergstr Ger ; 135(8): e202216142, 2023 Feb 13.
Article in English | MEDLINE | ID: mdl-38515764

ABSTRACT

Cytotoxic immune cells, including T lymphocytes (CTLs) and natural killer (NK) cells, are essential components of the host response against tumors. CTLs and NK cells secrete granzyme A (GzmA) upon recognition of cancer cells; however, there are very few tools that can detect physiological levels of active GzmA with high spatiotemporal resolution. Herein, we report the rational design of the near-infrared fluorogenic substrates for human GzmA and mouse GzmA. These activity-based probes display very high catalytic efficiency and selectivity over other granzymes, as shown in tissue lysates from wild-type and GzmA knock-out mice. Furthermore, we demonstrate that the probes can image how adaptive immune cells respond to antigen-driven recognition of cancer cells in real time.

9.
Cancers (Basel) ; 15(2)2023 Jan 04.
Article in English | MEDLINE | ID: mdl-36672279

ABSTRACT

(1) Despite the effectiveness of immune checkpoint inhibitors (ICIs) in lung cancer, there is a lack of knowledge about predictive biomarkers. The objective of our study is to analyze different subsets of T-lymphocytes and natural killer (NK) cells as predictive biomarkers in a cohort of patients with nonsmall cell lung cancer (NSCLC) treated with ICI. (2) This is an observational, prospective study with 55 NSCLC patients treated with ICI. A total of 43 T and NK cell subsets are analyzed in peripheral blood, including the main markers of exhaustion, differentiation, memory, activation, and inhibition. (3) Regarding the descriptive data, Granzyme B+CD4+ Treg lymphocytes stand out (median 17.4%), and within the NK populations, most patients presented cytotoxic NK cells (CD56+CD3-CD16+GranzymeB+; median 94.8%), and about half of them have highly differentiated adaptive-like NK cells (CD56+CD3-CD16+CD57+ (mean 59.8%). A statistically significant difference was observed between the expression of PD1 within the CD56bright NK cell subpopulation (CD56+CD3-CD16-PD-1+) (p = 0.047) and a better OS. (4) Circulating immune cell subpopulations are promising prognostic biomarkers for ICI. Pending on validation with a larger sample, here we provide an analysis of the major circulating T and NK cell subsets involved in cancer immunity, with promising results despite a small sample size.

10.
Chemphyschem ; 13(1): 291-9, 2012 Jan 16.
Article in English | MEDLINE | ID: mdl-22052844

ABSTRACT

Changes in fluorescence emission due to non-covalent analyte-fluorophore interactions in silica gel plates are studied and used as a general detection procedure for thin-layer chromatography (TLC). The presence of the analyte modifies the microenvironment of the fluorophore and thus changes the balance between radiative (k(r)) and non-radiative (k(nr)) emission constants. A model is proposed for analyte-fluorophore induced electrostatic interactions, which depend on analyte polarizability and are responsible for fluorescence enhancements. As consequence of these induced interactions, the analyte creates an apolar environment that prevents non-fluorescent decay mechanisms, decreasing k(nr). On the other hand, the effect of an increase in refractive index on k(r) is investigated, as it contributes to some extent to fluorescence enhancements in silica gel medium. Changes in fluorescence emission should be regarded as a general property of fluorophores in the presence of analytes, and criteria that fluorophores should meet to be used as sensitive TLC probes are discussed here.

11.
J Fungi (Basel) ; 8(4)2022 Mar 31.
Article in English | MEDLINE | ID: mdl-35448592

ABSTRACT

Gliotoxin is a fungal secondary metabolite with impact on health and agriculture since it might act as virulence factor and contaminate human and animal food. Homologous gliotoxin (GT) gene clusters are spread across a number of fungal species although if they produce GT or other related epipolythiodioxopiperazines (ETPs) remains obscure. Using bioinformatic tools, we have identified homologous gli gene clusters similar to the A. fumigatus GT gene cluster in several fungal species. In silico study led to in vitro confirmation of GT and Bisdethiobis(methylthio)gliotoxin (bmGT) production in fungal strain cultures by HPLC detection. Despite we selected most similar homologous gli gene cluster in 20 different species, GT and bmGT were only detected in section Fumigati species and in a Trichoderma virens Q strain. Our results suggest that in silico gli homology analyses in different fungal strains to predict GT production might be only informative when accompanied by analysis about mycotoxin production in cell cultures.

12.
Front Immunol ; 13: 896228, 2022.
Article in English | MEDLINE | ID: mdl-35651603

ABSTRACT

NK cells are key mediators of immune cell-mediated cytotoxicity toward infected and transformed cells, being one of the main executors of cell death in the immune system. NK cells recognize target cells through an array of inhibitory and activating receptors for endogenous or exogenous pathogen-derived ligands, which together with adhesion molecules form a structure known as immunological synapse that regulates NK cell effector functions. The main and best characterized mechanisms involved in NK cell-mediated cytotoxicity are the granule exocytosis pathway (perforin/granzymes) and the expression of death ligands. These pathways are recognized as activators of different cell death programmes on the target cells leading to their destruction. However, most studies analyzing these pathways have used pure recombinant or native proteins instead of intact NK cells and, thus, extrapolation of the results to NK cell-mediated cell death might be difficult. Specially, since the activation of granule exocytosis and/or death ligands during NK cell-mediated elimination of target cells might be influenced by the stimulus received from target cells and other microenvironment components, which might affect the cell death pathways activated on target cells. Here we will review and discuss the available experimental evidence on how NK cells kill target cells, with a special focus on the different cell death modalities that have been found to be activated during NK cell-mediated cytotoxicity; including apoptosis and more inflammatory pathways like necroptosis and pyroptosis. In light of this new evidence, we will develop the new concept of cell death induced by NK cells as a new regulatory mechanism linking innate immune response with the activation of tumour adaptive T cell responses, which might be the initiating stimulus that trigger the cancer-immunity cycle. The use of the different cell death pathways and the modulation of the tumour cell molecular machinery regulating them might affect not only tumour cell elimination by NK cells but, in addition, the generation of T cell responses against the tumour that would contribute to efficient tumour elimination and generate cancer immune memory preventing potential recurrences.


Subject(s)
Killer Cells, Natural , Neoplasms , Adaptive Immunity , Cytotoxicity, Immunologic , Humans , Ligands , Tumor Microenvironment
13.
Oncoimmunology ; 11(1): 2096359, 2022.
Article in English | MEDLINE | ID: mdl-35813574

ABSTRACT

The contribution of the T cell-related inhibitory checkpoint PD-1 to the regulation of NK cell activity is still not clear with contradictory results concerning its expression and role in the modulation of NK cell cytotoxicity. We provide novel key findings on the mechanism involved in the regulation of PD-1 expression on NK cell membrane and its functional consequences for the elimination of cancer cells. In contrast to freshly isolated NK cells from cancer patients, those from healthy donors did not express PD-1 on the cell membrane. However, when healthy NK cells were incubated with tumor target cells, membrane PD-1 expression increased, concurrent with the CD107a surface mobilization. This finding suggested that PD-1 was translocated to the cell membrane during NK cell degranulation after contact with target cells. Indeed, cytosolic PD-1 was expressed in freshly-isolated-NK cells and partly co-localized with CD107a and GzmB, confirming that membrane PD-1 corresponded to a pool of preformed PD-1. Moreover, NK cells that had mobilized PD-1 to the cell membrane presented a significantly reduced anti-tumor activity on PD-L1-expressing-tumor cells in vitro and in vivo, which was partly reversed by using anti-PD-1 blocking antibodies. Our results indicate that NK cells from healthy individuals express cytotoxic granule-associated PD-1, which is rapidly mobilized to the cell membrane after interaction with tumor target cells. This novel finding helps to understand how PD-1 expression is regulated on NK cell membrane and the functional consequences of this expression during the elimination of tumor cells, which will help to design more efficient NK cell-based cancer immunotherapies.


Subject(s)
Antineoplastic Agents , Neoplasms , Cell Membrane/metabolism , Humans , Immunotherapy , Killer Cells, Natural/metabolism , Lymphocyte Activation
14.
Front Immunol ; 13: 890836, 2022.
Article in English | MEDLINE | ID: mdl-35747143

ABSTRACT

Background: Colorectal cancer (CRC) is a heterogeneous disease with variable mutational profile and tumour microenvironment composition that influence tumour progression and response to treatment. While chemoresistant and poorly immunogenic CRC remains a challenge, the development of new strategies guided by biomarkers could help stratify and treat patients. Allogeneic NK cell transfer emerges as an alternative against chemoresistant and poorly immunogenic CRC. Methods: NK cell-related immunological markers were analysed by transcriptomics and immunohistochemistry in human CRC samples and correlated with tumour progression and overall survival. The anti-tumour ability of expanded allogeneic NK cells using a protocol combining cytokines and feeder cells was analysed in vitro and in vivo and correlated with CRC mutational status and the expression of ligands for immune checkpoint (IC) receptors regulating NK cell activity. Results: HLA-I downmodulation and NK cell infiltration correlated with better overall survival in patients with a low-stage (II) microsatellite instability-high (MSI-H) CRC, suggesting a role of HLA-I as a prognosis biomarker and a potential benefit of NK cell immunotherapy. Activated allogeneic NK cells were able to eliminate CRC cultures without PD-1 and TIM-3 restriction but were affected by HLA-I expression. In vivo experiments confirmed the efficacy of the therapy against both HLA+ and HLA- CRC cell lines. Concomitant administration of pembrolizumab failed to improve tumour control. Conclusions: Our results reveal an immunological profile of CRC tumours in which immunogenicity (MSI-H) and immune evasion mechanisms (HLA downmodulation) favour NK cell immunosurveillance at early disease stages. Accordingly, we have shown that allogeneic NK cell therapy can target tumours expressing mutations conferring poor prognosis regardless of the expression of T cell-related inhibitory IC ligands. Overall, this study provides a rationale for a new potential basis for CRC stratification and NK cell-based therapy.


Subject(s)
Colorectal Neoplasms , Microsatellite Instability , Colorectal Neoplasms/pathology , Humans , Immunotherapy/methods , Killer Cells, Natural , Ligands , Tumor Microenvironment
15.
Theranostics ; 12(1): 290-306, 2022.
Article in English | MEDLINE | ID: mdl-34987646

ABSTRACT

Coronavirus disease 2019 (COVID19), caused by SARS-CoV-2, is a complex disease, with a variety of clinical manifestations ranging from asymptomatic infection or mild cold-like symptoms to more severe cases requiring hospitalization and critical care. The most severe presentations seem to be related with a delayed, deregulated immune response leading to exacerbated inflammation and organ damage with close similarities to sepsis. Methods: In order to improve the understanding on the relation between host immune response and disease course, we have studied the differences in the cellular (monocytes, CD8+ T and NK cells) and soluble (cytokines, chemokines and immunoregulatory ligands) immune response in blood between Healthy Donors (HD), COVID19 and a group of patients with non-COVID19 respiratory tract infections (NON-COV-RTI). In addition, the immune response profile has been analyzed in COVID19 patients according to disease severity. Results: In comparison to HDs and patients with NON-COV-RTI, COVID19 patients show a heterogeneous immune response with the presence of both activated and exhausted CD8+ T and NK cells characterised by the expression of the immune checkpoint LAG3 and the presence of the adaptive NK cell subset. An increased frequency of adaptive NK cells and a reduction of NK cells expressing the activating receptors NKp30 and NKp46 correlated with disease severity. Although both activated and exhausted NK cells expressing LAG3 were increased in moderate/severe cases, unsupervised cell clustering analyses revealed a more complex scenario with single NK cells expressing more than one immune checkpoint (PD1, TIM3 and/or LAG3). A general increased level of inflammatory cytokines and chemokines was found in COVID19 patients, some of which like IL18, IL1RA, IL36B and IL31, IL2, IFNα and TNFα, CXCL10, CCL2 and CCL8 were able to differentiate between COVID19 and NON-COV-RTI and correlated with bad prognosis (IL2, TNFα, IL1RA, CCL2, CXCL10 and CXCL9). Notably, we found that soluble NKG2D ligands from the MIC and ULBPs families were increased in COVID19 compared to NON-COV-RTI and correlated with disease severity. Conclusions: Our results provide a detailed comprehensive analysis of the presence of activated and exhausted CD8+T, NK and monocyte cell subsets as well as extracellular inflammatory factors beyond cytokines/chemokines, specifically associated to COVID19. Importantly, multivariate analysis including clinical, demographical and immunological experimental variables have allowed us to reveal specific immune signatures to i) differentiate COVID19 from other infections and ii) predict disease severity and the risk of death.


Subject(s)
COVID-19/blood , COVID-19/immunology , Adult , Aged , Aged, 80 and over , Biomarkers/blood , CD8-Positive T-Lymphocytes/virology , COVID-19/mortality , Case-Control Studies , Chemokines/blood , Cytokines/blood , Female , Hospitalization , Humans , Killer Cells, Natural/virology , Logistic Models , Male , Middle Aged , Monocytes/virology , Prospective Studies , Respiratory Tract Infections/blood , Respiratory Tract Infections/immunology , Severity of Illness Index
16.
J Cell Biol ; 174(4): 509-19, 2006 Aug 14.
Article in English | MEDLINE | ID: mdl-16893972

ABSTRACT

Aspergillus fumigatus infections cause high levels of morbidity and mortality in immunocompromised patients. Gliotoxin (GT), a secondary metabolite, is cytotoxic for mammalian cells, but the molecular basis and biological relevance of this toxicity remain speculative. We show that GT induces apoptotic cell death by activating the proapoptotic Bcl-2 family member Bak, but not Bax, to elicit the generation of reactive oxygen species, the mitochondrial release of apoptogenic factors, and caspase-3 activation. Activation of Bak by GT is direct, as GT triggers in vitro a dose-dependent release of cytochrome c from purified mitochondria isolated from wild-type and Bax- but not Bak-deficient cells. Resistance to A. fumigatus of mice lacking Bak compared to wild-type mice demonstrates the in vivo relevance of this GT-induced apoptotic pathway involving Bak and suggests a correlation between GT production and virulence. The elucidation of the molecular basis opens new strategies for the development of therapeutic regimens to combat A. fumigatus and related fungal infections.


Subject(s)
Apoptosis/physiology , Aspergillosis/metabolism , Aspergillus fumigatus/metabolism , Gliotoxin/toxicity , Immunity, Innate/genetics , bcl-2 Homologous Antagonist-Killer Protein/metabolism , Animals , Apoptosis/drug effects , Apoptosis Regulatory Proteins/metabolism , Aspergillosis/immunology , Aspergillosis/physiopathology , Aspergillus fumigatus/pathogenicity , Caspase 3 , Caspases/metabolism , Cell Line, Transformed , Cytochromes c/metabolism , Disease Models, Animal , Dose-Response Relationship, Drug , Fibroblasts/chemistry , Fibroblasts/cytology , Fibroblasts/drug effects , Mice , Mice, Inbred C57BL , Mice, Knockout , Mitochondrial Membranes/drug effects , Mitochondrial Membranes/metabolism , Oxidative Stress/drug effects , Oxidative Stress/physiology , Reactive Oxygen Species/metabolism , Virulence , bcl-2 Homologous Antagonist-Killer Protein/genetics
17.
Toxins (Basel) ; 13(2)2021 01 23.
Article in English | MEDLINE | ID: mdl-33498622

ABSTRACT

Multidrug-resistant bacteria such as methicillin-resistant Staphylococcus aureus (MRSA) is one of the major causes of hospital-acquired and community infections and pose a challenge to the human health care system. Therefore, it is important to find new drugs that show activity against these bacteria, both in monotherapy and in combination with other antimicrobial drugs. Gliotoxin (GT) is a mycotoxin produced by Aspergillus fumigatus and other fungi of the Aspergillus genus. Some evidence suggests that GT shows antimicrobial activity against S. aureus in vitro, albeit its efficacy against multidrug-resistant strains such asMRSA or vancomycin-intermediate S. aureus (VISA) strainsis not known. This work aimedto evaluate the antibiotic efficacy of GT as monotherapy or in combination with other therapeutics against MRSA in vitro and in vivo using a Caenorhabditis elegans infection model.


Subject(s)
Anti-Bacterial Agents/pharmacology , Gliotoxin/pharmacology , Methicillin-Resistant Staphylococcus aureus/drug effects , Staphylococcal Infections/drug therapy , Vancomycin/pharmacology , Animals , Caenorhabditis elegans , Disease Models, Animal , Disk Diffusion Antimicrobial Tests , Dose-Response Relationship, Drug , Drug Resistance, Multiple, Bacterial , Drug Therapy, Combination , Methicillin-Resistant Staphylococcus aureus/growth & development , Staphylococcal Infections/microbiology
18.
Theranostics ; 11(20): 9873-9883, 2021.
Article in English | MEDLINE | ID: mdl-34815792

ABSTRACT

Aims: Recent in vitro findings suggest that the serine protease Granzyme K (GzmK) may act as a proinflammatory mediator. However, its role in sepsis is unknown. Here we aim to understand the role of GzmK in a mouse model of bacterial sepsis and compare it to the biological relevance of Granzyme A (GzmA). Methods: Sepsis was induced in WT, GzmA-/- and GzmK-/- mice by an intraperitoneal injection of 2x108 CFU from E. coli. Mouse survival was monitored during 5 days. Levels of IL-1α, IL-1ß, TNFα and IL-6 in plasma were measured and bacterial load in blood, liver and spleen was analyzed. Finally, profile of cellular expression of GzmA and GzmK was analyzed by FACS. Results: GzmA and GzmK are not involved in the control of bacterial infection. However, GzmA and GzmK deficient mice showed a lower sepsis score in comparison with WT mice, although only GzmA deficient mice exhibited increased survival. GzmA deficient mice also showed reduced expression of some proinflammatory cytokines like IL1-α, IL-ß and IL-6. A similar result was found when extracellular GzmA was therapeutically inhibited in WT mice using serpinb6b, which improved survival and reduced IL-6 expression. Mechanistically, active extracellular GzmA induces the production of IL-6 in macrophages by a mechanism dependent on TLR4 and MyD88. Conclusions: These results suggest that although both proteases contribute to the clinical signs of E. coli-induced sepsis, inhibition of GzmA is sufficient to reduce inflammation and improve survival irrespectively of the presence of other inflammatory granzymes, like GzmK.


Subject(s)
Granzymes/metabolism , Sepsis/metabolism , Animals , Cytokines/metabolism , Disease Models, Animal , Escherichia coli/pathogenicity , Escherichia coli Infections/metabolism , Inflammation/metabolism , Macrophages/metabolism , Mice , Mice, Inbred C57BL , Sepsis/physiopathology , Tumor Necrosis Factor-alpha/metabolism
19.
Theranostics ; 11(8): 3781-3795, 2021.
Article in English | MEDLINE | ID: mdl-33664861

ABSTRACT

Aims: Peritonitis is one of the most common causes of sepsis, a serious syndrome characterized by a dysregulated systemic inflammatory response. Recent evidence suggests that Granzyme A (GzmA), a serine protease mainly expressed by NK and T cells, could act as a proinflammatory mediator and could play an important role in the pathogenesis of sepsis. This work aims to analyze the role and the therapeutic potential of GzmA in the pathogenesis of peritoneal sepsis. Methods: The level of extracellular GzmA as well as GzmA activity were analyzed in serum from healthy volunteers and patients with confirmed peritonitis and were correlated with the Sequential Organ Failure Assessment (SOFA) score. Peritonitis was induced in C57Bl/6 (WT) and GzmA-/- mice by cecal ligation and puncture (CLP). Mice were treated intraperitoneally with antibiotics alone or in combination serpinb6b, a specific GzmA inhibitor, for 5 days. Mouse survival was monitored during 14 days, levels of some proinflammatory cytokines were measured in serum and bacterial load and diversity was analyzed in blood and spleen at different times. Results: Clinically, elevated GzmA was observed in serum from patients with abdominal sepsis suggesting that GzmA plays an important role in this pathology. In the CLP model GzmA deficient mice, or WT mice treated with an extracellular GzmA inhibitor, showed increased survival, which correlated with a reduction in proinflammatory markers in both serum and peritoneal lavage fluid. GzmA deficiency did not influence bacterial load in blood and spleen and GzmA did not affect bacterial replication in macrophages in vitro, indicating that GzmA has no role in bacterial control. Analysis of GzmA in lymphoid cells following CLP showed that it was mainly expressed by NK cells. Mechanistically, we found that extracellular active GzmA acts as a proinflammatory mediator in macrophages by inducing the TLR4-dependent expression of IL-6 and TNFα. Conclusions: Our findings implicate GzmA as a key regulator of the inflammatory response during abdominal sepsis and provide solid evidences about its therapeutic potential for the treatment of this severe pathology.


Subject(s)
Granzymes/antagonists & inhibitors , Peritonitis/drug therapy , Peritonitis/enzymology , Sepsis/drug therapy , Sepsis/enzymology , Aged , Aged, 80 and over , Animals , Cytokines/blood , Disease Models, Animal , Female , Granzymes/blood , Granzymes/deficiency , Granzymes/genetics , Humans , Inflammation Mediators/blood , Interleukin-6/biosynthesis , Killer Cells, Natural/enzymology , Macrophages/enzymology , Macrophages/immunology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Middle Aged , Molecular Targeted Therapy , Peritonitis/etiology , Precision Medicine , Sepsis/etiology , Serpins/pharmacology , Toll-Like Receptor 4/metabolism
20.
Biology (Basel) ; 10(3)2021 Mar 10.
Article in English | MEDLINE | ID: mdl-33801808

ABSTRACT

Several hundred millions of people have been diagnosed of coronavirus disease 2019 (COVID-19), causing millions of deaths and a high socioeconomic burden. SARS-CoV-2, the causative agent of COVID-19, induces both specific T- and B-cell responses, being antibodies against the virus detected a few days after infection. Passive immunization with hyperimmune plasma from convalescent patients has been proposed as a potentially useful treatment for COVID-19. Using an in-house quantitative ELISA test, we found that plasma from 177 convalescent donors contained IgG antibodies specific to the spike receptor-binding domain (RBD) of SARS-CoV-2, although at very different concentrations which correlated with previous disease severity and gender. Anti-RBD IgG plasma concentrations significantly correlated with the plasma viral neutralizing activity (VN) against SARS-CoV-2 in vitro. Similar results were found using an independent cohort of serum from 168 convalescent health workers. These results validate an in-house RBD IgG ELISA test in a large cohort of COVID-19 convalescent patients and indicate that plasma from all convalescent donors does not contain a high enough amount of anti-SARS-CoV-2-RBD neutralizing IgG to prevent SARS-CoV-2 infection in vitro. The use of quantitative anti-RBD IgG detection systems might help to predict the efficacy of the passive immunization using plasma from patients recovered from SARS-CoV-2.

SELECTION OF CITATIONS
SEARCH DETAIL