Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Front Oncol ; 10: 533, 2020.
Article in English | MEDLINE | ID: mdl-32457826

ABSTRACT

Background: Carcinomas of unknown primary (CUP) account for 3-5% of all malignancy and, despite a reduction in incidence, the overall survival has not improved over the last decade. Chemotherapy regimens have not provided encouraging results. New diagnostic technologies, such as next generation sequencing (NGS), could represent a chance to identify potentially targetable genomic alterations in order to personalize treatment of CUP and provide insights into tumor biology. Methods: A systematic review of studies of patients with CUP, whose tumor specimen was evaluated through a NGS panel, has been performed on June 10th, 2019 according to PRISMA criteria from PubMed, ASCO meeting library and Clinicaltrial.gov. We have identified potentially targetable alterations for which approved/off-label/in clinical trials drugs are available. Moreover, we have included case reports about CUP patients treated with targeted therapies driven by NGS results in order to explore the clinical role of NGS in this setting. Results: We have evaluated 15 publications of which eleven studies (9 full-text articles and 2 abstracts) have analyzed the genomic profiling of CUPs through NGS technology, with different platforms and with different patients cohorts, ranging from 16 to 1,806 patients. Among all these studies, 85% of patients demonstrated at least one molecular alteration, the most frequent involving TP53 (41.88%), KRAS (18.81%), CDKN2A (8.8%), and PIK3CA (9.3%). A mean of 47.3% of patients harbored a potentially targetable alteration for which approved/off-label/in clinical trials drugs were available. Furthermore, we have identified 4 case reports in order to evaluate the clinical relevance of a specific targeted therapy identified through NGS. Conclusions: NGS may represent a tool to improve diagnosis and treatment of CUP by identifying therapeutically actionable alterations and providing insights into tumor biology.

2.
Target Oncol ; 12(4): 525-533, 2017 08.
Article in English | MEDLINE | ID: mdl-28669023

ABSTRACT

BACKGROUND: Patients with metastatic colorectal cancer (mCRC) refractory to standard therapies have a poor prognosis. In this setting, recruitment into clinical trials is warranted, and studies driven by selection according to individual tumor molecular characteristics are expected to provide added value. OBJECTIVE: We retrospectively analyzed data from patients with mCRC refractory to or following failure of standard therapies who were enrolled into phase I/II clinical studies at the Niguarda Cancer Center based on the presence of a specific molecular profile expected to represent the target of susceptibility to the experimental drug(s). PATIENTS AND METHODS: From June 2011 to May 2016, 2044 patients with mCRC underwent molecular screening. Eighty patients (3.9%) were enrolled in ad hoc studies; the median age was 60 years (range 36-86) and the median number of previous treatment lines was five (range 2-8). Molecular characteristics exploited within these studies were MGMT promoter hypermethylation (48.7%), HER2 amplification (28.8%), BRAF V600E mutation (20%), and novel gene fusions involving ALK or NTRK (2.5%). RESULTS: One patient (1%) had RECIST (Response Evaluation Criteria In Solid Tumors) complete response (CR), 13 patients (16.5%) experienced a partial response (PR), and 28 (35%) stable disease (SD). Median progression-free survival (PFS) was 2.8 months (range 2.63-3.83), with 24% of patients displaying PFS >5 months. Median growth modulation index (GMI) was 0.85 (range 0-15.61) and 32.5% of patients had GMI >1.33. KRAS exon 2 mutations were found in 38.5% of patients, and among the 78 patients with known KRAS status, those with wild-type tumors had longer PFS than those with mutated tumors (3.80 [95% CI 2.80-5.03] vs. 2.13 months [95% CI 1.77-2.87], respectively, p = 0.001). Median overall survival (OS) was 7.83 months (range 7.17-9.33) for all patients, and patients with KRAS wild-type tumors had longer OS than those with mutated tumors (7.83 [95% CI 7.33-10.80] vs. 7.18 months [95% CI 5.63-9.33], respectively, p = 0.06). CONCLUSIONS: This single-institution retrospective study indicates that in a heavily pretreated population approximately 4% of mCRC tumors display a potential actionable molecular context suitable for therapeutic intervention. Application of molecular selection is challenging but improves clinical outcome even in later lines of treatment.


Subject(s)
Biomarkers, Tumor/metabolism , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/metabolism , Aged , Aged, 80 and over , Disease-Free Survival , Drug Resistance, Neoplasm , Female , Humans , Male , Middle Aged , Neoplasm Metastasis , Retrospective Studies
4.
Target Oncol ; 5(1): 19-28, 2010 Mar.
Article in English | MEDLINE | ID: mdl-20383783

ABSTRACT

The introduction of KRAS testing as a diagnostic tool to select patients for epidermal growth factor receptor (EGFR)-targeted cetuximab- or panitumumab-based therapies for metastatic colorectal cancer is widely regarded as a key advance in the field of personalized cancer medicine. Oncologists are now facing emerging issues in the treatment of metastatic colorectal cancer, including: (i) the identification of additional genetic determinants of primary resistance to EGFR-targeted therapy for further improving selection of patients; (ii) the explanation of rare cases of patients carrying KRAS-mutated tumors who have been reported to respond to either cetuximab or panitumumab and (iii) the discovery of mechanisms of secondary resistance to anti-EGFR antibody therapies. Here we discuss the potential role of comprehensive dissection of the key oncogenic nodes in the EGFR signaling cascade to predict resistance and sensitivity to EGFR monoclonal antibodies in metastatic colorectal cancer. Current data suggest that, together with KRAS mutations, the evaluation of BRAF and PIK3CA/PTEN alterations could also be useful for selecting patients with reduced chance to benefit from EGFR-targeted therapy. Furthermore, measuring EGFR gene copy number also appears relevant to positively identify responders. Up until now, each of these markers has been mainly assessed as a single event, often in retrospective analyses and patients' series. As these molecular alterations display overlapping patterns of occurrence, this adds considerable complexity to the drawing of an algorithm suitable for clinical decision-making. We suggest that in the near future comprehensive molecular analysis of the entire oncogenic pathway triggered by the EGFR should be performed, thus enhancing the prediction ability of individual markers.


Subject(s)
Antibodies, Monoclonal/therapeutic use , Carcinoma/drug therapy , Colorectal Neoplasms/drug therapy , Animals , Biomarkers, Pharmacological , Carcinoma/diagnosis , Carcinoma/genetics , Carcinoma/pathology , Colorectal Neoplasms/diagnosis , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Decision Making , Drug Resistance, Neoplasm , ErbB Receptors/immunology , Gene Dosage/genetics , Humans , Mutation/genetics , Neoplasm Metastasis , Prognosis , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins/metabolism , Proto-Oncogene Proteins p21(ras) , Signal Transduction , ras Proteins/genetics , ras Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL