Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Database
Language
Publication year range
1.
Mol Pharm ; 19(11): 4067-4079, 2022 11 07.
Article in English | MEDLINE | ID: mdl-36226722

ABSTRACT

Extracellular vesicle (EV)-mediated microRNA transfer and propagation from the donor cell to the recipient cell in the tumor microenvironment have significant implications, including the development of multidrug resistance (MDR). Although miRNA-encapsulated EV have been shown to have functional effects on recipient cells, the quantitative aspects of transfer kinetics and functional effects remain poorly understood. Intracellular events such as degradation of miRNA, loading of miRNA into EVs, cellular release of EVs, and their uptake by recipient cells govern the transfer and functional effect of encapsulated miRNA. Based on these rate-limiting steps, we developed a mathematical model using ordinary differential equations (model 1). We performed coculture experiments using ID8-VEGF ovarian cancer cells to demonstrate EV-mediated propagation of tumor suppressor miRNA Let7b administered with hyaluronic acid-poly(ethyleneimine) (HA-PEI) nanoparticles. Using the experimental data and model fitting, we determined the rate constants for the kinetic events involved in the transfer from the donor cells to the recipient cells. In model 2, we performed Let7b transfection experiments in ID8-VEGF cells with HA-PEI nanoparticles to determine the concentration-effect relationship on HMGA2 mRNA levels. Lastly, in model 3, we combined model 1 and model 2 parameters to describe the kinetics and effect relationship of EV-Let7b in recipient cells to predict the minimum number of miRNA copies needed to show functional effects.


Subject(s)
Extracellular Vesicles , MicroRNAs , Ovarian Neoplasms , Humans , Female , MicroRNAs/genetics , MicroRNAs/metabolism , Vascular Endothelial Growth Factor A/metabolism , Extracellular Vesicles/metabolism , Ovarian Neoplasms/metabolism , Models, Theoretical , Tumor Microenvironment
2.
Nanomedicine ; 12(4): 987-1002, 2016 May.
Article in English | MEDLINE | ID: mdl-26767514

ABSTRACT

Neuroinflammation is a hallmark of acute and chronic neurodegenerative disorders. The main aim of this study was to evaluate the therapeutic efficacy of intranasal cationic nanoemulsion encapsulating an anti-TNFα siRNA, for potential anti-inflammatory therapy. TNFα siRNA nanoemulsions were prepared and characterized for particle size, surface charge, morphology, and stability and encapsulation efficiency. Qualitative and quantitative intracellular uptake studies by confocal imaging and flow cytometry, respectively, showed higher uptake compared to Lipofectamine® transfected siRNA. Nanoemulsion significantly lowered TNFα levels in LPS-stimulated cells. Upon intranasal delivery of cationic nanoemulsions almost 5 fold higher uptake was observed in the rat brain compared to non-encapsulated siRNA. More importantly, intranasal delivery of TNFα siRNA nanoemulsions in vivo markedly reduced the unregulated levels of TNFα in an LPS-induced model of neuroinflammation. These results indicate that intranasal delivery of cationic nanoemulsions encapsulating TNFα siRNA offered an efficient means of gene knockdown and this approach has significant potential in prevention of neuroinflammation. FROM THE CLINICAL EDITOR: Neuroinflammation is often seen in patients with neurodegenerative disorders and tumor necrosis factor-alpha (TNFα) plays a significant role in contributing to neuronal dysfunction. As a result, inhibition of TNFα may alleviate disease severity. In this article, the authors investigated using a cationic nanoemulsion system carrying TNFα siRNA intra-nasally to protect against neuroinflammation. This new method may provide a future approach in this clinical setting.


Subject(s)
Brain/drug effects , Inflammation/drug therapy , RNA, Small Interfering/genetics , Tumor Necrosis Factor-alpha/genetics , Administration, Intranasal , Animals , Anti-Inflammatory Agents/administration & dosage , Brain/pathology , Emulsions/administration & dosage , Flow Cytometry , Gene Silencing , Humans , Inflammation/genetics , Lipids , Macrophages , Nanoparticles/administration & dosage , Nanoparticles/chemistry , Neurons/drug effects , Neurons/pathology , Particle Size , RNA, Small Interfering/administration & dosage , Rats , Tumor Necrosis Factor-alpha/administration & dosage
3.
Nanomedicine (Lond) ; 17(19): 1355-1373, 2022 08.
Article in English | MEDLINE | ID: mdl-36255330

ABSTRACT

miRNA are critical messengers in the tumor microenvironment (TME) that influence various processes leading to immune suppression, tumor progression, metastasis and resistance. Strategies to modulate miRNAs in the TME have important implications in overcoming these challenges. However, miR delivery to specific cells in the TME has been challenging. This review discusses nanomedicine strategies to achieve cell-specific delivery of miRNAs. The key goal of delivery is to activate the tumor immune landscape as well as to prevent chemotherapy resistance. Specifically, the use of hyaluronic acid-based nanoparticle miRNA delivery to the TME is discussed. The discussion is focused on miRNA-125b for reprogramming tumor-associated macrophages to overcome immunosuppression and miRNA-let-7b to overcome resistance to anticancer chemotherapeutics because both these miRNAs have been extensively evaluated for delivery with hyaluronic acid-based delivery systems.


miRNAs are the messenger molecules with the tumor that have significant influence on the cancer growth and progression. Many strategies have been evaluated to modulate these messengers artificially to obstruct cancer growth and destroy cancer cells. This review discusses one such strategy to deliver these messenger miRNAs using hyaluronic acid-based nanoparticles that harness the body's own immune system to fight cancer. The two miRNAs that this review discusses are miRNA-125b and miRNA-let7b.


Subject(s)
MicroRNAs , Neoplasms , Humans , MicroRNAs/genetics , MicroRNAs/therapeutic use , Nanomedicine , Drug Resistance, Neoplasm , Hyaluronic Acid , Neoplasms/drug therapy , Neoplasms/genetics , Tumor Microenvironment
4.
Mol Ther Oncolytics ; 25: 57-68, 2022 Jun 16.
Article in English | MEDLINE | ID: mdl-35399604

ABSTRACT

Most advanced-stage ovarian cancer patients, including those with epithelial ovarian cancer (EOC), develop recurrent disease and acquisition of resistance to chemotherapy, leading to limited treatment options. Decrease in Let7b miRNA levels in clinical ovarian cancer has been associated with chemoresistance, increased proliferation, invasion, and relapse in EOC. We have established a murine EOC relapsed model by administering paclitaxel (PTX) and stopping therapy to allow for tumor regrowth. Global microRNA profiling in the relapsed tumor showed significant downregulation of Let7b relative to untreated tumors. Here, we report the use of hyaluronic acid (HA)-based nanoparticle formulation that can deliver Let7b miRNA mimic to tumor cells and achieve cellular programming both in vitro and in vivo. We demonstrate that a therapeutic combination of Let7b miRNA and PTX leads to significant improvement in anti-tumor efficacy in the relapsed model of EOC. We further demonstrate that the combination therapy is safe for repeated administration. This novel approach of cellular reprogramming of tumor cells using clinically relevant miRNA mimic in combination with chemotherapy could enable more effective therapeutic outcomes for patients with advanced-stage relapsed EOC.

SELECTION OF CITATIONS
SEARCH DETAIL