Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters

Database
Language
Publication year range
1.
Phys Rev Lett ; 116(23): 236101, 2016 Jun 10.
Article in English | MEDLINE | ID: mdl-27341245

ABSTRACT

Surface defects are believed to govern the adsorption behavior of reducible oxides. We challenge this perception on the basis of a combined scanning-tunneling-microscopy and density-functional-theory study, addressing the Au adsorption on reduced CeO_{2-x}(111). Despite a clear thermodynamic preference for oxygen vacancies, individual Au atoms were found to bind mostly to regular surface sites. Even at an elevated temperature, aggregation at step edges and not decoration of defects turned out to be the main consequence of adatom diffusion. Our findings are explained with the polaronic nature of the Au-ceria system, which imprints a strong diabatic character onto the diffusive motion of adatoms. Diabatic barriers are generally higher than those in the adiabatic regime, especially if the hopping step couples to an electron transfer into the ad-gold. As the population of O vacancies always requires a charge exchange, defect decoration by Au atoms becomes kinetically hindered. Our study demonstrates that polaronic effects determine not only electron transport in reducible oxides but also the adsorption characteristics and therewith the surface chemistry.

2.
Phys Chem Chem Phys ; 11(17): 3290-9, 2009 May 07.
Article in English | MEDLINE | ID: mdl-19370226

ABSTRACT

The partial oxidation of methanol to formaldehyde on well-ordered thin V(2)O(5)(001) films supported on Au(111) was studied. Temperature-programmed desorption shows that bulk-terminated surfaces are not reactive, whereas reduced surfaces produce formaldehyde. Formaldehyde desorption occurs between 400 K and 550 K, without evidence for reaction products other than formaldehyde and water. Scanning tunnelling microscopy shows that methanol forms methoxy groups on vanadyl oxygen vacancies. If methanol is adsorbed at low temperature, the available adsorption sites are only partly covered with methoxy groups after warming up to room temperature, whereas prolonged methanol dosing at room temperature leads to full coverage. In order to explain these findings we present a model that essentially comprises recombination of methoxy and hydrogen to methanol in competition with the reaction of two surface hydroxyl groups to form water.

3.
Phys Rev Lett ; 100(9): 096802, 2008 Mar 07.
Article in English | MEDLINE | ID: mdl-18352741

ABSTRACT

Low-temperature STM measurements combined with density functional theory calculations are employed to study the adsorption of gold on alumina/NiAl(110). The binding of Au monomers involves breaking of an oxide Al-O bond below the adatom and stabilizing the hence undercoordinated O ion by forming a new bond to an Al atom in the NiAl. The adsorption implies negative charging of the adatom. The linear arrangement of favorable binding sites induces the self-organization of Au atoms into chains. For every ad-chain, the number of transfer electrons from the support is determined by analyzing the node structure of the corresponding highest occupied molecular orbital.

4.
Phys Rev Lett ; 99(22): 226103, 2007 Nov 30.
Article in English | MEDLINE | ID: mdl-18233301

ABSTRACT

In situ band gap mapping of the V2O5(001) crystal surface revealed a reversible metal-to-insulator transition at 350-400 K, which occurs inhomogeneously across the surface and expands preferentially in the direction of the vanadyl (V=O) double rows. Supported by density functional theory and Monte Carlo simulations, the results are rationalized on the basis of the anisotropic growth of vanadyl-oxygen vacancies and a concomitant oxygen loss driven metal-to-insulator transition at the surface. At elevated temperatures irreversible surface reduction proceeds sequentially as V2O5(001) --> V6O13(001) --> V2O3(0001).

5.
Phys Rev Lett ; 89(9): 096103, 2002 Aug 26.
Article in English | MEDLINE | ID: mdl-12190418

ABSTRACT

We present a density-functional theory trend study addressing the incorporation of oxygen into the basal plane of the late 4d transition metals (TMs) from Ru to Ag. Occupation of subsurface sites is always connected with a significant distortion of the host lattice, rendering it initially less favorable than on-surface chemisorption. Penetration starts only after a critical coverage theta(c), which is lower for the softer metals towards the right of the TM series. The computed theta(c) are found to be very similar to those above which the bulk oxide phase becomes thermodynamically more stable, thus suggesting that the initial incorporation of O actuates the formation of a surface oxide on TM surfaces.

SELECTION OF CITATIONS
SEARCH DETAIL