ABSTRACT
Demyelination and failure of remyelination in the central nervous system (CNS) characterize a number of neurological disorders. Spontaneous remyelination in demyelinating diseases is limited, as oligodendrocyte precursor cells (OPCs), which are often present in demyelinated lesions in abundance, mostly fail to differentiate into oligodendrocytes, the myelinating cells in the CNS. In addition to OPCs, the lesions are assembled numbers of activated resident microglia/infiltrated macrophages; however, the mechanisms and potential role of interactions between the microglia/macrophages and OPCs are poorly understood. Here, we generated a transcriptional profile of exosomes from activated microglia, and found that miR-615-5p was elevated. miR-615-5p bound to 3'UTR of myelin regulator factor (MYRF), a crucial myelination transcription factor expressed in oligodendrocyte lineage cells. Mechanistically, exosomes from activated microglia transferred miR-615-5p to OPCs, which directly bound to MYRF and inhibited OPC maturation. Furthermore, an effect of AAV expressing miR-615-5p sponge in microglia was tested in experimental autoimmune encephalomyelitis (EAE) and cuprizone (CPZ)-induced demyelination model, the classical mouse models of multiple sclerosis. miR-615-5p sponge effectively alleviated disease progression and promoted remyelination. This study identifies miR-615-5p/MYRF as a new target for the therapy of demyelinating diseases.
Subject(s)
Encephalomyelitis, Autoimmune, Experimental , Exosomes , MicroRNAs , Myelin Sheath , Animals , Mice , Exosomes/metabolism , Microglia/metabolism , MicroRNAs/geneticsABSTRACT
Benefiting from the photovoltaic material innovation and delicate device optimization, high-efficiency solar cells employing polymeric materials are thriving. Reducing the gap of cost, efficiency, and stability is the critical challenge faced by the emerging solar cells such as organics, quantum dots and perovskites. Poly(3-alkylthiophene) demonstrates great potential in organic solar cells and quantum dot solar cells as the active layer or the hole transport layer due to its large scalability, excellent photoelectric performance, and favorable hydrophobicity. The present low efficiency and insufficient stability, restrict its commercial application. In this work, a facile strategy of blending two simple polythiophenes is put forward to manipulate the film microstructure and enhance the device efficiency and thermal stability of solar cells. The introduction of P3PT can improve the power conversion efficiency (PCE) of a benchmark cost-effective blend P3HT:O-IDTBR to 7.41%, and the developed ternary solar cells also exhibit increased thermal stability. More strikingly, the quantum dot solar cells with the dual-polythiophene hole transport layer achieve the highest PCE of 10.51%, which is among the topmost efficiencies for quantum dots/polythiophene solar cells. Together, this work provides an effective route to simultaneously optimize the device efficiency and thermal stability of solar cells.
ABSTRACT
The rise of antibiotic-resistant strains demands new alternatives in antibacterial treatment. Bacteriophages, with their precise host specificity and ability to target and eliminate bacteria safely, present a valuable option. Meanwhile, hydrogels, known for their excellent biodegradability and biocompatibility, serve as ideal carriers for bacteriophages. The combination of bacteriophages and hydrogels ensures heightened phage activity, concentration, controlled release, and strong antibacterial properties, making it a promising avenue for antibacterial treatment. This article provides a comprehensive review of different crosslinking methods for phage hydrogels, focusing on their application in treating infections caused by various drug-resistant bacteria and highlighting their effective antibacterial properties and controlled release capabilities.
Subject(s)
Anti-Bacterial Agents , Bacteriophages , Hydrogels , Hydrogels/chemistry , Bacteriophages/physiology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Humans , Bacteria/drug effects , Bacteria/virology , Animals , Bacterial Infections/therapy , Phage Therapy/methodsABSTRACT
The adsorption of common anions found in water can have a considerable impact on the surface state and optical characteristics of titanium dioxide (TiO2), which has an important impact on the photocatalytic nitrogen reduction reaction (NRR). This work utilizes density functional theory (DFT) computations to examine the electronic and optical characteristics of the TiO2 (001) surface under various anion adsorptions in order to clarify their influence on the photocatalytic NRR of TiO2. The modifications in the structure, optical, and electronic properties of TiO2 before and after anion adsorption are investigated. In addition, the routes of Gibbs free energy for the NRR are also evaluated. The results indicate that the adsorption of anions modifies the surface characteristics of TiO2 to a certain degree, hence impacting the separating and recombining charge carriers by affecting the energy gap of TiO2. More importantly, the adsorption of anions can increase the energy barriers for the NRR, thereby exerting a detrimental effect on its photocatalytic activity. These findings provide a valuable theoretical contribution to understanding the photocatalytic reaction process of TiO2 and its potential application of NRR in the actual complex water phase.
ABSTRACT
In this work, to promote the separation of photogenerated carriers, prevent the catalyst from photo-corrosion, and improve the photo-Fenton synergistic degradation of organic pollutants, the coating structure of FeOOH/BiO2-x rich in oxygen vacancies was successfully synthesized by a facile and environmentally friendly two-step process of hydrothermal and chemical deposition. Through a series of degradation activity tests of synthesized materials under different conditions, it was found that FeOOH/BiO2-x demonstrated outstanding organic pollutant degradation activity under visible and near-infrared light when hydrogen peroxide was added. After 90 min of reaction under photo-Fenton conditions, the degradation rate of Methylene Blue by FeOOH/BiO2-x was 87.4%, significantly higher than the degradation efficiency under photocatalysis (60.3%) and Fenton (49.0%) conditions. The apparent rate constants of FeOOH/BiO2-x under photo-Fenton conditions were 2.33 times and 3.32 times higher than photocatalysis and Fenton catalysis, respectively. The amorphous FeOOH was tightly coated on the layered BiO2-x, which significantly increased the specific surface area and the number of active sites of the composites, and facilitated the improvement of the separation efficiency of the photogenerated carriers and the prevention of photo-corrosion of BiO2-x. The analysis of the mechanism of photo-Fenton synergistic degradation clarified that ·OH, h+, and ·O2- are the main active substances involved in the degradation of pollutants. The optimal degradation conditions were the addition of the FeOOH/BiO2-x composite catalyst loaded with 20% Fe at a concentration of 0.5 g/L, the addition of hydrogen peroxide at a concentration of 8 mM, and an initial pH of 4. This outstanding catalytic system offers a fresh approach to the creation and processing of iron-based photo-Fenton catalysts by quickly and efficiently degrading various organic contaminants.
ABSTRACT
Achieving a more balanced charge transport by morphological control is crucial in reducing bimolecular and trap-assisted recombination and enhancing the critical parameters for efficient organic solar cells (OSCs). Hence, a facile strategy is proposed to reduce the crystallinity difference between donor and acceptor by incorporating a novel multifunctional liquid crystal small molecule (LCSM) BDTPF4-C6 into the binary blend. BDTPF4-C6 is the first LCSM based on a tetrafluorobenzene unit and features a low liquid crystal phase transition temperature and strong self-assembly ability, conducive to regulating the active layer morphology. When BDTPF4-C6 is introduced as a guest molecule into the PM6 : Y6 binary, it exhibits better compatibility with the donor PM6 and primarily resides within the PM6 phase because of the similarity-intermiscibility principle. Moreover, systematic studies revealed that BDTPF4-C6 could be used as a seeding agent for PM6 to enhance its crystallinity, thereby forming a more balanced and favourable charge transport with suppressed charge recombination. Intriguingly, dual Förster resonance energy transfer was observed between the guest molecule and the host donor and acceptor, resulting in an improved current density. This study demonstrates a facile approach to balance the charge mobilities and offers new insights into boosting the efficiency of single-junction OSCs beyond 20 %.
ABSTRACT
Oligodendrocyte progenitor cells (OPCs) originate in the ventricular zone (VZ) of the brain and spinal cord, and their primary function is to differentiate into oligodendrocytes (OLs). Studies have shown that OPCs and OLs are pathologically and physiologically heterogeneous. Previous transcriptome analyses used Bulk RNA-seq, which compares average gene expression in cells and does not allow for heterogeneity. In recent years, the development of single-cell sequencing (scRNA-seq) and single-cell nuclear sequencing (snRNA-seq) has allowed us to study an individual cell. In this review, sc/snRNA-seq was used to study the different subpopulations of OL lineage cells, their developmental trajectories, and their applications in related diseases. These techniques can distinguish different subpopulations of cells, and identify differentially expressed genes in particular cell types under certain conditions, such as treatment or disease. It is of great significance to the study of the occurrence, prevention, and treatment of various diseases.
Subject(s)
Oligodendroglia , Spinal Cord , Cell Lineage , Oligodendroglia/metabolism , Brain , RNA, Small Nuclear/metabolism , Cell Differentiation/physiologyABSTRACT
Astrocytes are the most plentiful cell type in the central nervous system (CNS) and perform complicated functions in health and disease. It is obvious that different astrocyte subpopulations, or activation states, are relevant with specific genomic programs and functions. In recent years, the emergence of new technologies such as single-cell RNA sequencing (scRNA-seq) has made substantial advance in the characterization of astrocyte heterogeneity, astrocyte developmental trajectory, and its role in CNS diseases which has had a significant impact on neuroscience. In this review, we present an overview of astrocyte development, heterogeneity, and its essential role in the physiological and pathological environments of the CNS. We focused on the critical role of single-cell sequencing in revealing astrocyte development, heterogeneity, and its role in different CNS diseases.
Subject(s)
Astrocytes , Central Nervous System , Astrocytes/metabolism , Neurogenesis , RNA/metabolismABSTRACT
Anacardic acid (AA) is a phenolic acid extract found in a number of plants, crops, and fruits. It exhibits a wide range of biological activities. This study displayed that AA effectively alleviated EAE, a classical mouse model of multiple sclerosis. AA administered to the EAE greatly decreased inflammatory cell infiltration to the CNS and protected the myelin integrity in the white matter of the spinal cord. AA could block lipopolysaccharide-induced DC activation. inhibited the polarization of 2D2 mice-derived T cells by inhibiting the DCs activity. Immunoblot results indicated that the phosphorylation of NF-κB is significantly suppressed in AA-treated DCs. This work displayed that AA possessed a potential anti-inflammatory therapeutic effect for the treatment of autoimmune disease.
Subject(s)
Encephalomyelitis, Autoimmune, Experimental , Anacardic Acids , Animals , Dendritic Cells , Encephalomyelitis, Autoimmune, Experimental/drug therapy , Mice , Mice, Inbred C57BL , Neuroinflammatory Diseases , Spinal CordABSTRACT
Solution-processing hybrid solar cells with organics and colloidal quantum dots (CQDs) have drawn substantial attention in the past decade. Nevertheless, hybrid solar cells based on the recently developed directly synthesized CQD inks are still unexplored. Herein, a facile polymer blending strategy is put forward to enable directly synthesized CQD/polymer hybrid solar cells with a champion efficiency of 13%, taking advantage of the conjugated polymer blends with finely optimized aggregation behaviors. The spectroscopic and electrical investigations on carrier transport and recombination indicate that polymer blends can endow fast carrier transport and less recombination over the single counterparts. Moreover, the blending strategy offers a "dilution effect" for top-notch photovoltaic polymers with excessively strong aggregation tendency, resulting in moderate feature domain size and surface roughness, which afford fast hole transport and therefore high photovoltaic performance. The effectiveness of this strategy is successfully validated using two pairs of photovoltaic polymers. Accordingly, the relationships between polymer morphology, carrier transport, and photovoltaic performance are established to advance the progress of CQD/polymer hybrid solar cells. Such progress stresses that the utilization of aggregation-suppressed polymer blends is a facile approach toward the fabrication of high-efficiency organic-inorganic hybrid solar cells.
ABSTRACT
The power conversion efficiency of polythiophene organic solar cells is constantly refreshed. Despite the renewed device efficiency, very few efforts have been devoted to understanding how the type of electron acceptor alters the photovoltaic and mechanical properties of these low-cost solar cells. Herein, the authors conduct a thorough investigation of photovoltaic and mechanical characteristics of a simple yet less-explored polythiophene, namely poly(3-pentylthiophene) (P3PT), in three different types of organic solar cells, where ZY-4Cl, PC71 BM, and N2200 are employed as three representative acceptors, respectively. Compared with the reference poly(3-hexylthiophene) (P3HT)-based solar cells, P3PT-based devices, all perform more efficiently. Particularly, the P3PT:ZY-4Cl blend exhibits the highest efficiency (ca. 10%) among the six combinations and outperforms the prior top-performance system P3HT:ZY-4Cl. Furthermore, the blend films based on N2200 exhibit a high crack-onset strain of â¼38% on average, which is approximately 15- and 17-times higher than those of ZY-4Cl and PC71 BM, respectively. The microstructural origins for the above difference are well elucidated by detailed grazing incidence X-ray scattering and microscopy analysis. This work not only underlines the potential of P3PT in prolific solar cell research but also demonstrates the superior tensile properties of polythiophene-based all-polymer blends for the preparation of stretchable solar cells.
ABSTRACT
Bulk heterojunctions comprising mixed donor (D) and acceptor (A) materials have proven to be the most efficient device structures for organic photovoltaic (OPV) cells. The bulk morphology of such cells plays a key role in charge generation, recombination, and transport, thus determining the device performance. Although numerous studies have discussed the morphology-performance relationship of these cells, the method of designing OPV materials with the desired morphology remains unclear. Herein, guided by molecular electrostatic potential distributions, we have established a connection between the chemical structure and bulk morphology. We show that the molecular orientation at the D-A interface and the domain purity in the blend can be effectively modulated by modifying the functional groups. Enhancing the D-A interaction is beneficial for charge generation. However, the resulting low domain purity and increased charge transfer ratio in its hybridization with the local excitation states lead to severe charge recombination. Fine-tuning the bulk morphology can give balanced charge generation and recombination, which is crucial for further boosting the efficiency of the OPV cells.
ABSTRACT
BACKGROUND: Aberrant expression of circular RNAs contributes to the initiation and progression of cancers, but the underlying mechanism remains elusive. METHODS: RNA-seq and qRT-PCR were performed to screen differential expressed circRNAs between gastric cancer tissues and adjacent normal tissues. Candidate circRNA (circMRPS35) was screened out and validated by qRT-PCR. Cell proliferation and invasion ability were determined by CCK-8 and cell invasion assays. RNA-seq, GO-pathway, RNA pull-down and ChIRP were further applied to search for detailed mechanism. RESULTS: Here, a novel circRNA named circMRPS35, was screened out by RNA-seq in gastric cancer tissues, whose expression is related to clinicopathological characteristics and prognosis in gastric cancer patients. Biologically, circMRPS35 suppresses the proliferation and invasion of gastric cancer cells in vitro and in vivo. Mechanistically, circMRPS35 acts as a modular scaffold to recruit histone acetyltransferase KAT7 to the promoters of FOXO1 and FOXO3a genes, which elicits acetylation of H4K5 in their promoters. Particularly, circMRPS35 specifically binds to FOXO1/3a promoter regions directly. Thus, it dramatically activates the transcription of FOXO1/3a and triggers subsequent response of their downstream target genes expression, including p21, p27, Twist1 and E-cadherin, resulting in the inhibition of cell proliferation and invasion. Moreover, circMRPS35 expression positively correlates with that of FOXO1/3a in gastric cancer tissues. CONCLUSIONS: Our findings not only reveal the pivotal roles of circMRPS35 in governing histone modification in anticancer treatment, but also advocate for triggering circMRPS35/KAT7/FOXO1/3a pathway to combat gastric cancer.
Subject(s)
Forkhead Box Protein O1/metabolism , Forkhead Box Protein O3/metabolism , Gene Expression Regulation, Neoplastic , Histone Acetyltransferases/metabolism , Histones/chemistry , RNA, Circular/genetics , Stomach Neoplasms/pathology , Animals , Apoptosis , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Cell Proliferation , Disease Progression , Forkhead Box Protein O1/genetics , Forkhead Box Protein O3/genetics , Histone Acetyltransferases/genetics , Humans , Mice , Mice, Nude , Prognosis , Protein Processing, Post-Translational , Stomach Neoplasms/genetics , Stomach Neoplasms/metabolism , Survival Rate , Tumor Cells, Cultured , Xenograft Model Antitumor AssaysABSTRACT
Decreasing the energy loss is one of the most feasible ways to improve the efficiencies of organic photovoltaic (OPV) cells. Recent studies have suggested that non-radiative energy loss ( E non - rad loss ) is the dominant factor that hinders further improvements in state-of-the-art OPV cells. However, there is no rational molecular design strategy for OPV materials with suppressed E non - rad loss . Herein, taking molecular surface electrostatic potential (ESP) as a quantitative parameter, we establish a general relationship between chemical structure and intermolecular interactions. The results reveal that increasing the ESP difference between donor and acceptor will enhance the intermolecular interaction. In the OPV cells, the enhanced intermolecular interaction will increase the charge-transfer (CT) state ratio in its hybridization with the local exciton state to facilitate charge generation, but simultaneously result in a larger E non - rad loss . These results suggest that finely tuning the ESP of OPV materials is a feasible method to further improve the efficiencies of OPV cells.
ABSTRACT
Quality assessment of Cortex Periplocae remains a challenge, due to its complex chemical profile. This study aims to investigate the chemical components of Cortex Periplocae, including its non-volatile and volatile constituents, via liquid chromatograph-mass spectrometry (LC-MS/MS) and gas chromatography-mass spectrometry (GC-MS) assays. The established strategy manifested that Cortex Periplocae from different producing areas was determined by identifying 27 chemical markers with ultra-high-performance liquid chromatography, coupled with quadrupole tandem time-of-flight mass spectrometry (UPLC-Q-TOF-MS/MS), including four main groups of cardiac glycosides, organic acids, aldehydes, and oligosaccharides. These groups' variable importance in the projection (VIP) were greater than 1. Simultaneously, the samples were divided into four categories, combined with multivariate statistical analysis. In addition, in order to further understand the difference in the content of samples from different producing areas, nine chemical markers of Cortex Periplocae from 14 different producing areas were determined by high performance liquid chromatography coupled with mass spectrometry (HPLC-MS/MS), and results indicated that the main effective constituents of Cortex Periplocae varied with places of origin. Furthermore, in GC-MS analysis, samples were divided into three groups with multivariate statistical analysis; in addition, 22 differential components whose VIP were greater than 1 were identified, which were principally volatile oils and fatty acids. Finally, the relative contents of seven main volatile constituents were obtained, which varied extremely with the producing areas. The results showed that the LC-MS/MS and GC-MS assays, combined with multivariate statistical analysis for Cortex Periplocae, provided a comprehensive and effective means for its quality evaluation.
Subject(s)
Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/standards , Periploca/chemistry , Phytochemicals/chemistry , Plant Bark/chemistry , Plant Extracts/chemistry , Plant Roots/chemistry , Chromatography, High Pressure Liquid , Cluster Analysis , Gas Chromatography-Mass Spectrometry , Periploca/classification , Reproducibility of Results , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Tandem Mass SpectrometryABSTRACT
Anthocyanin (ACN) is a natural antioxidant with multiple biological activities, and the aim of this study was to evaluate the protective effect of ACN on the development and progression of lung cancer and to further explore its possible mechanism of action. In vivo, we fed C57BL/6J mice a 0.5%ACN diet or a control diet to observe their effects on the development and progression of urethane-induced lung cancer. In vitro, multiple lung cancer cell lines were used to investigate the effects of C3G on cell viability. The results showed a reduction in lung tumor burden and downregulation of oxidative phosphorylation and fatty acid degradation pathways in lung tissue of urethane-administrated ACN-fed mice compared with control diet-fed mice. In vitro, cyanidin-3-O-glucoside chloride (C3G) intervention treatment significantly inhibited proliferation and apoptosis of A549 cells. This process is likely due to the modulation of AMPK/mTOR signaling pathway by C3G to regulate cellular fatty acid metabolism and reduce intracellular lipid accumulation which affects the growth of lung cancer cells. These results suggest that ACN can inhibit the development and progression of urethane-induced lung tumors and alter the lipid metabolism of tumors in C57BL/6J mice.
ABSTRACT
Organic solar cells (OSCs) have potential for applications in wearable electronics. Except for high power conversion efficiency (PCE), excellent tensile properties and mechanical stability are required for achieving high-performance wearable OSCs, while the present metrics barely meet the stretchable requirements. Herein, this work proposes a facile and low-cost strategy for constructing intrinsically stretchable OSCs by introducing a readily accessible polymer elastomer as a diluent for all-polymer photovoltaic blends. Remarkably, record-high stretchability with a fracture strain of up to 1000% and mechanical stability with elastic recovery >90% under cyclic tensile tests are realized in the OSCs active layers for the first time. Specifically, the tensile properties of best-performing all-polymer photovoltaic blends are increased by up to 250 times after blending. Previously unattainable performance metrics (fracture strain >50% and PCE >10%) are achieved simultaneously for the resulting photovoltaic films. Furthermore, an overall evaluation parameter y is proposed for the efficiency-cost- stretchability balance of photovoltaic blend films. The y value of dilute-absorber system is two orders of magnitude greater than those of prior state-of-the-art systems. Additionally, intrinsically stretchable devices are prepared to showcase the mechanical stability. Overall, this work offers a new avenue for constructing and comprehensively evaluating intrinsically stretchable organic electronic films.
ABSTRACT
Programmed cell death protein-1 (PD-1)/programmed death ligand-1 (PD-L1) immune checkpoint blockade as a breakthrough in cancer immunotherapy has shown unprecedented positive outcomes in the clinic. However, the overall effectiveness of PD-L1 antibody is less than expected. An increasing number of studies have demonstrated that PD-L1 is widely distributed and expressed not only on the cell membrane but also on the inside of the cells as well as on the extracellular vesicles secreted by tumour cells. Both endogenous and exogenous PD-L1 play significant roles in influencing the therapeutic effect of anti-tumour immunity. Herein, we mainly focused on the distribution and function of PD-L1 and further summarized the potential targeted therapeutic strategies. More importantly, in addition to taking the overall expression abundance of PD-L1 as a predictive indicator for selecting corresponding PD-1/PD-L1 monoclonal antibodies (mAbs), we also proposed that personalized combination therapies based on the different distribution of PD-L1 are worth attention to achieve more efficient and effective therapeutic outcomes in cancer patients. LINKED ARTICLES: This article is part of a themed issue on Cancer Microenvironment and Pharmacological Interventions. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v181.2/issuetoc.
Subject(s)
Neoplasms , Programmed Cell Death 1 Receptor , Humans , B7-H1 Antigen , Ligands , Neoplasms/drug therapy , Immunotherapy , Tumor MicroenvironmentABSTRACT
The solution aggregation structure of conjugated polymers is crucial to the morphology and resultant optoelectronic properties of organic electronics and is of considerable interest in the field. Precise characterizations of the solution aggregation structures of organic photovoltaic (OPV) blends and their temperature-dependent variations remain challenging. In this work, the temperature-dependent solution aggregation structures of three representative high-efficiency OPV blends using small-angle X-ray/neutron scattering are systematically probed. Three cases of solution processing resiliency are elucidated in state-of-the-art OPV blends. The exceptional processing resiliency of high-efficiency PBQx-TF blends can be attributed to the minimal changes in the multiscale solution aggregation structure at elevated temperatures. Importantly, a new parameter, the percentage of acceptors distributed within polymer aggregates (Ф), for the first time in OPV blend solution, establishes a direct correlation between Ф and performance is quantified. The device performance is well correlated with the Kuhn length of the cylinder related to polymer aggregates L1 at the small scale and the Ф at the large scale. Optimal device performance is achieved with L1 at ≈30 nm and Ф within the range of 60 ± 5%. This study represents a significant advancement in the aggregation structure research of organic electronics.
ABSTRACT
Demyelination is a pathological feature commonly observed in various central nervous system diseases. It is characterized by the aggregation of oligodendrocyte progenitor cells (OPCs) in the lesion area, which face difficulties in differentiating into mature oligodendrocytes (OLGs). The differentiation of OPCs requires the presence of Sox10, but its expression decreases under pathological conditions. Therefore, we propose a therapeutic strategy to regulate OPCs differentiation and achieve myelin repair by endogenously loading Sox10 into exosomes. To accomplish this, we generated a lentivirus-armed Sox10 that could anchor to the inner surface of the exosome membrane. We then infected HEK293 cells to obtain exosomes with high expression of Sox10 (exosomes-Sox10, ExoSs). In vitro, experiments confirmed that both Exos and ExoSs can be uptaken by OPCs, but only ExoSs exhibit a pro-differentiation effect on OPCs. In vivo, we administered PBS, Exos, and ExoSs to cuprizone-induced demyelinating mice. The results demonstrated that ExoSs can regulate the differentiation of PDGFRα+ OPCs into APC+ OLGs and reduce myelin damage in the corpus callosum region of the mouse brain compared to other groups. Further testing suggests that Sox10 may have a reparative effect on the myelin sheath by enhancing the expression of MBP, possibly facilitated by the exosome delivery of the protein into the lesion. This endogenously loaded technology holds promise as a strategy for protein-based drugs in the treatment of demyelinating diseases.