Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 42
Filter
1.
EMBO Rep ; 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38918502

ABSTRACT

Cellular senescence is a hallmark of advanced age and a major instigator of numerous inflammatory pathologies. While endothelial cell (EC) senescence is aligned with defective vascular functionality, its impact on fundamental inflammatory responses in vivo at single-cell level remain unclear. To directly investigate the role of EC senescence on dynamics of neutrophil-venular wall interactions, we applied high resolution confocal intravital microscopy to inflamed tissues of an EC-specific progeroid mouse model, characterized by profound indicators of EC senescence. Progerin-expressing ECs supported prolonged neutrophil adhesion and crawling in a cell autonomous manner that additionally mediated neutrophil-dependent microvascular leakage. Transcriptomic and immunofluorescence analysis of inflamed tissues identified elevated levels of EC CXCL1 on progerin-expressing ECs and functional blockade of CXCL1 suppressed the dysregulated neutrophil responses elicited by senescent ECs. Similarly, cultured progerin-expressing human ECs exhibited a senescent phenotype, were pro-inflammatory and prompted increased neutrophil attachment and activation. Collectively, our findings support the concept that senescent ECs drive excessive inflammation and provide new insights into the mode, dynamics, and mechanisms of this response at single-cell level.

2.
FASEB J ; 34(8): 10027-10040, 2020 08.
Article in English | MEDLINE | ID: mdl-32592197

ABSTRACT

Aspirin prevents thrombosis by inhibiting platelet cyclooxygenase (COX)-1 activity and the production of thromboxane (Tx)A2 , a pro-thrombotic eicosanoid. However, the non-platelet actions of aspirin limit its antithrombotic effects. Here, we used platelet-COX-1-ko mice to define the platelet and non-platelet eicosanoids affected by aspirin. Mass-spectrometry analysis demonstrated blood from platelet-COX-1-ko and global-COX-1-ko mice produced similar eicosanoid profiles in vitro: for example, formation of TxA2 , prostaglandin (PG) F2α , 11-hydroxyeicosatraenoic acid (HETE), and 15-HETE was absent in both platelet- and global-COX-1-ko mice. Conversely, in vivo, platelet-COX-1-ko mice had a distinctly different profile from global-COX-1-ko or aspirin-treated control mice, notably significantly higher levels of PGI2 metabolite. Ingenuity Pathway Analysis (IPA) predicted that platelet-COX-1-ko mice would be protected from thrombosis, forming less pro-thrombotic TxA2 and PGE2 . Conversely, aspirin or lack of systemic COX-1 activity decreased the synthesis of anti-aggregatory PGI2 and PGD2 at non-platelet sites leading to predicted thrombosis increase. In vitro and in vivo thrombosis studies proved these predictions. Overall, we have established the eicosanoid profiles linked to inhibition of COX-1 in platelets and in the remainder of the cardiovascular system and linked them to anti- and pro-thrombotic effects of aspirin. These results explain why increasing aspirin dosage or aspirin addition to other drugs may lessen antithrombotic protection.


Subject(s)
Aspirin/pharmacology , Blood Platelets/metabolism , Cyclooxygenase 1/physiology , Cyclooxygenase Inhibitors/pharmacology , Eicosanoids/metabolism , Membrane Proteins/physiology , Thrombosis/metabolism , Animals , Arachidonic Acid/administration & dosage , Blood Platelets/drug effects , Female , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Thrombosis/drug therapy , Thrombosis/pathology
3.
Neuroendocrinology ; 111(5): 421-441, 2021.
Article in English | MEDLINE | ID: mdl-32365351

ABSTRACT

INTRODUCTION: Gonadotropin-releasing hormone (GnRH) deficiency causes hypogonadotropic hypogonadism (HH), a rare genetic disorder that impairs sexual reproduction. HH can be due to defective GnRH-secreting neuron development or function and may be associated with other clinical signs in overlapping genetic syndromes. With most of the cases being idiopathic, genetics underlying HH is still largely unknown. OBJECTIVE: To assess the contribution of mutated Semaphorin 3G (SEMA3G) in the onset of a syndromic form of HH, characterized by intellectual disability and facial dysmorphic features. METHOD: By combining homozygosity mapping with exome sequencing, we identified a novel variant in the SEMA3G gene. We then applied mouse as a model organism to examine SEMA3Gexpression and its functional requirement in vivo. Further, we applied homology modelling in silico and cell culture assays in vitro to validate the pathogenicity of the identified gene variant. RESULTS: We found that (i) SEMA3G is expressed along the migratory route of GnRH neurons and in the developing pituitary, (ii) SEMA3G affects GnRH neuron development, but is redundant in the adult hypothalamic-pituitary-gonadal axis, and (iii) mutated SEMA3G alters binding properties in silico and in vitro to its PlexinA receptors and attenuates its effect on the migration of immortalized GnRH neurons. CONCLUSION: In silico, in vitro, and in vivo models revealed that SEMA3G regulates GnRH neuron migration and that its mutation affecting receptor selectivity may be responsible for the HH-related defects.


Subject(s)
Gonadotropin-Releasing Hormone/deficiency , Hypogonadism/genetics , Hypothalamo-Hypophyseal System/growth & development , Hypothalamo-Hypophyseal System/metabolism , Semaphorins/physiology , Animals , Cells, Cultured , Consanguinity , Craniofacial Abnormalities/etiology , Developmental Disabilities/etiology , Homozygote , Humans , Hypogonadism/complications , Intellectual Disability/etiology , Male , Mice , Pedigree , Siblings , Syndrome
4.
Circ Res ; 125(9): 847-854, 2019 10 11.
Article in English | MEDLINE | ID: mdl-31510878

ABSTRACT

RATIONALE: Endothelial cells (ECs) and platelets, which respectively produce antithrombotic prostacyclin and prothrombotic thromboxane A2, both express COX1 (cyclooxygenase1). Consequently, there has been no way to delineate any antithrombotic role for COX1-derived prostacyclin from the prothrombotic effects of platelet COX1. By contrast, an antithrombotic role for COX2, which is absent in platelets, is straightforward to demonstrate. This has resulted in an incomplete understanding of the relative importance of COX1 versus COX2 in prostacyclin production and antithrombotic protection in vivo. OBJECTIVE: We sought to identify the role, if any, of COX1-derived prostacyclin in antithrombotic protection in vivo and compare this to the established protective role of COX2. METHODS AND RESULTS: We developed vascular-specific COX1 knockout mice and studied them alongside endothelial-specific COX2 knockout mice. COX1 immunoreactivity and prostacyclin production were primarily associated with the endothelial layer of aortae; freshly isolated aortic ECs released >10-fold more prostacyclin than smooth muscle cells. Moreover, aortic prostacyclin production, the ability of aortic rings to inhibit platelet aggregation and plasma prostacyclin levels were reduced when COX1 was knocked out in ECs but not in smooth muscle cells. When thrombosis was measured in vivo after FeCl3 carotid artery injury, endothelial COX1 deletion accelerated thrombosis to a similar extent as prostacyclin receptor blockade. However, this effect was lost when COX1 was deleted from both ECs and platelets. Deletion of COX2 from ECs also resulted in a prothrombotic phenotype that was independent of local vascular prostacyclin production. CONCLUSIONS: These data demonstrate for the first time that, in healthy animals, endothelial COX1 provides an essential antithrombotic tone, which is masked when COX1 activity is lost in both ECs and platelets. These results help us define a new 2-component paradigm wherein thrombotic tone is regulated by both COX1 and COX2 through complementary but mechanistically distinct pathways.


Subject(s)
Cyclooxygenase 1/deficiency , Endothelium, Vascular/metabolism , Epoprostenol/metabolism , Fibrinolytic Agents/metabolism , Gene Deletion , Membrane Proteins/deficiency , Platelet Aggregation/physiology , Animals , Aorta/metabolism , Cyclooxygenase 1/genetics , Epoprostenol/genetics , Female , Male , Membrane Proteins/genetics , Mice , Mice, Knockout , Mice, Transgenic
5.
J Med Genet ; 56(9): 629-638, 2019 09.
Article in English | MEDLINE | ID: mdl-31129566

ABSTRACT

BACKGROUND: Pathogenic PLOD3 variants cause a connective tissue disorder (CTD) that has been described rarely. We further characterise this CTD and propose a clinical diagnostic label to improve recognition and diagnosis of PLOD3-related disease. METHODS: Reported PLOD3 phenotypes were compared with known CTDs utilising data from three further individuals from a consanguineous family with a homozygous PLOD3 c.809C>T; p.(Pro270Leu) variant. PLOD3 mRNA expression in the developing embryo was analysed for tissue-specific localisation. Mouse microarray expression data were assessed for phylogenetic gene expression similarities across CTDs with overlapping clinical features. RESULTS: Key clinical features included ocular abnormalities with risk for retinal detachment, sensorineural hearing loss, reduced palmar creases, finger contractures, prominent knees, scoliosis, low bone mineral density, recognisable craniofacial dysmorphisms, developmental delay and risk for vascular dissection. Collated clinical features showed most overlap with Stickler syndrome with variable features of Ehlers-Danlos syndrome (EDS) and epidermolysis bullosa (EB). Human lysyl hydroxylase 3/PLOD3 expression was localised to the developing cochlea, eyes, skin, forelimbs, heart and cartilage, mirroring the clinical phenotype of this disorder. CONCLUSION: These data are consistent with pathogenic variants in PLOD3 resulting in a clinically distinct Stickler-like syndrome with vascular complications and variable features of EDS and EB. Early identification of PLOD3 variants would improve monitoring for comorbidities and may avoid serious adverse ocular and vascular outcomes.


Subject(s)
Arthritis/diagnosis , Arthritis/genetics , Connective Tissue Diseases/diagnosis , Connective Tissue Diseases/genetics , Genetic Association Studies , Genetic Predisposition to Disease , Genetic Variation , Hearing Loss, Sensorineural/diagnosis , Hearing Loss, Sensorineural/genetics , Procollagen-Lysine, 2-Oxoglutarate 5-Dioxygenase/genetics , Retinal Detachment/diagnosis , Retinal Detachment/genetics , Vascular Diseases/diagnosis , Adolescent , Adult , Animals , Arthritis/complications , Comparative Genomic Hybridization , Connective Tissue Diseases/complications , Disease Models, Animal , Facies , Female , Gene Expression , Genetic Association Studies/methods , Hearing Loss, Sensorineural/complications , Humans , Immunohistochemistry , Male , Mice , Models, Molecular , Mutation , Pedigree , Phenotype , Phylogeny , Procollagen-Lysine, 2-Oxoglutarate 5-Dioxygenase/chemistry , Protein Conformation , Retinal Detachment/complications , Structure-Activity Relationship , Vascular Diseases/etiology , Exome Sequencing , Young Adult
6.
Hum Mol Genet ; 26(22): 4315-4326, 2017 11 15.
Article in English | MEDLINE | ID: mdl-28973288

ABSTRACT

Congenital hypopituitarism (CH) is characterized by the deficiency of one or more pituitary hormones and can present alone or in association with complex disorders. Congenital hyperinsulinism (CHI) is a disorder of unregulated insulin secretion despite hypoglycaemia that can occur in isolation or as part of a wider syndrome. Molecular diagnosis is unknown in many cases of CH and CHI. The underlying genetic etiology causing the complex phenotype of CH and CHI is unknown. In this study, we identified a de novo heterozygous mutation in the developmental transcription factor, forkhead box A2, FOXA2 (c.505T>C, p.S169P) in a child with CHI and CH with craniofacial dysmorphic features, choroidal coloboma and endoderm-derived organ malformations in liver, lung and gastrointestinal tract by whole exome sequencing. The mutation is at a highly conserved residue within the DNA binding domain. We demonstrated strong expression of Foxa2 mRNA in the developing hypothalamus, pituitary, pancreas, lungs and oesophagus of mouse embryos using in situ hybridization. Expression profiling on human embryos by immunohistochemistry showed strong expression of hFOXA2 in the neural tube, third ventricle, diencephalon and pancreas. Transient transfection of HEK293T cells with Wt (Wild type) hFOXA2 or mutant hFOXA2 showed an impairment in transcriptional reporter activity by the mutant hFOXA2. Further analyses using western blot assays showed that the FOXA2 p.(S169P) variant is pathogenic resulting in lower expression levels when compared with Wt hFOXA2. Our results show, for the first time, the causative role of FOXA2 in a complex congenital syndrome with hypopituitarism, hyperinsulinism and endoderm-derived organ abnormalities.


Subject(s)
Craniofacial Abnormalities/genetics , Hepatocyte Nuclear Factor 3-beta/genetics , Hepatocyte Nuclear Factor 3-beta/metabolism , Hyperinsulinism/genetics , Hypopituitarism/genetics , Adult , Animals , Child, Preschool , Craniofacial Abnormalities/metabolism , Female , HEK293 Cells , Humans , Hyperinsulinism/metabolism , Hypopituitarism/metabolism , Male , Mice , Mutation , Pregnancy , Transcription Factors/genetics , Transfection
7.
Proc Natl Acad Sci U S A ; 113(5): E548-57, 2016 Feb 02.
Article in English | MEDLINE | ID: mdl-26764381

ABSTRACT

Aberrant embryonic development of the hypothalamus and/or pituitary gland in humans results in congenital hypopituitarism (CH). Transcription factor 7-like 1 (TCF7L1), an important regulator of the WNT/ß-catenin signaling pathway, is expressed in the developing forebrain and pituitary gland, but its role during hypothalamo-pituitary (HP) axis formation or involvement in human CH remains elusive. Using a conditional genetic approach in the mouse, we first demonstrate that TCF7L1 is required in the prospective hypothalamus to maintain normal expression of the hypothalamic signals involved in the induction and subsequent expansion of Rathke's pouch progenitors. Next, we reveal that the function of TCF7L1 during HP axis development depends exclusively on the repressing activity of TCF7L1 and does not require its interaction with ß-catenin. Finally, we report the identification of two independent missense variants in human TCF7L1, p.R92P and p.R400Q, in a cohort of patients with forebrain and/or pituitary defects. We demonstrate that these variants exhibit reduced repressing activity in vitro and in vivo relative to wild-type TCF7L1. Together, our data provide support for a conserved molecular function of TCF7L1 as a transcriptional repressor during HP axis development in mammals and identify variants in this transcription factor that are likely to contribute to the etiology of CH.


Subject(s)
Hypothalamo-Hypophyseal System , Transcription Factor 7-Like 1 Protein/physiology , Animals , Cohort Studies , Humans , Mice , Pituitary Gland/abnormalities , Pituitary Gland/metabolism , Pituitary Gland/physiopathology , Prosencephalon/abnormalities , Prosencephalon/metabolism
8.
Int J Mol Sci ; 19(2)2018 Feb 01.
Article in English | MEDLINE | ID: mdl-29389897

ABSTRACT

Cohesin complex components exert fundamental roles in animal cells, both canonical in cell cycle and non-canonical in gene expression regulation. Germline mutations in genes coding for cohesins result in developmental disorders named cohesinopaties, of which Cornelia de Lange syndrome (CdLS) is the best-known entity. However, a basic description of mammalian expression pattern of cohesins in a physiologic condition is still needed. Hence, we report a detailed analysis of expression in murine and human tissues of cohesin genes defective in CdLS. Using both quantitative and qualitative methods in fetal and adult tissues, cohesin genes were found to be ubiquitously and differentially expressed in human tissues. In particular, abundant expression was observed in hematopoietic and central nervous system organs. Findings of the present study indicate tissues which should be particularly sensitive to mutations, germline and/or somatic, in cohesin genes. Hence, this expression analysis in physiological conditions may represent a first core reference for cohesinopathies.


Subject(s)
Cell Cycle Proteins/genetics , Central Nervous System/metabolism , Chromosomal Proteins, Non-Histone/genetics , De Lange Syndrome/genetics , Gene Expression Regulation, Developmental , Hematopoiesis/genetics , Animals , Central Nervous System/embryology , Central Nervous System/growth & development , Chondroitin Sulfate Proteoglycans/genetics , DNA-Binding Proteins , Gene Expression Profiling , Genetic Predisposition to Disease/genetics , Histone Deacetylases/genetics , Humans , Mice , Mutation , Nuclear Proteins/genetics , Phosphoproteins/genetics , Proteins/genetics , Repressor Proteins/genetics , Cohesins
9.
J Cell Physiol ; 231(3): 613-22, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26206533

ABSTRACT

Genetic variants within components of the cohesin complex (NIPBL, SMC1A, SMC3, RAD21, PDS5, ESCO2, HDAC8) are believed to be responsible for a spectrum of human syndromes known as "cohesinopathies" that includes Cornelia de Lange Syndrome (CdLS). CdLS is a multiple malformation syndrome affecting almost any organ and causing severe developmental delay. Cohesinopathies seem to be caused by dysregulation of specific developmental pathways downstream of mutations in cohesin components. However, it is still unclear how mutations in different components of the cohesin complex affect the output of gene regulation. In this study, zebrafish embryos and SMC1A-mutated patient-derived fibroblasts were used to analyze abnormalities induced by SMC1A loss of function. We show that the knockdown of smc1a in zebrafish impairs neural development, increases apoptosis, and specifically down-regulates Ccnd1 levels. The same down-regulation of cohesin targets is observed in SMC1A-mutated patient fibroblasts. Previously, we have demonstrated that haploinsufficiency of NIPBL produces similar effects in zebrafish and in patients fibroblasts indicating a possible common feature for neurological defects and mental retardation in cohesinopathies. Interestingly, expression analysis of Smc1a and Nipbl in developing mouse embryos reveals a specific pattern in the hindbrain, suggesting a role for cohesins in neural development in vertebrates.


Subject(s)
Apoptosis/physiology , Cell Cycle Proteins/metabolism , Chromosomal Proteins, Non-Histone/metabolism , Cyclin D1/metabolism , De Lange Syndrome/metabolism , Transcription Factors/metabolism , Zebrafish/embryology , Animals , Apoptosis/genetics , Cell Cycle Proteins/genetics , Chromosomal Proteins, Non-Histone/genetics , De Lange Syndrome/genetics , Down-Regulation , Humans , Mice , Mutation/genetics , Transcription Factors/genetics , Zebrafish/metabolism , Zebrafish Proteins/genetics , Zebrafish Proteins/metabolism
10.
Birth Defects Res A Clin Mol Teratol ; 106(2): 104-13, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26663582

ABSTRACT

BACKGROUND: Spina bifida is a multifactorial congenital malformation of the central nervous system. The aim of this study was to ascertain the relevance of cell death/proliferation balance in human spina bifida and to assess autophagy distribution and levels during embryo-fetal development in neural tissue. METHODS: Five human cases with myelomeningocoele were compared with 10 healthy human controls and LC3 protein expression was also analyzed in mouse embryos. Cell death was evaluated using TUNEL (terminal deoxynucleotidyl transferase-mediated deoxyuridinetriphosphate nick end-labeling) assay; cell proliferation was studied by counting Ki67-positive cells, and autophagy was assessed by observing the presence of LC3 punctuate dots. RESULTS: Comparing human cases and controls (13 to 21 weeks of gestation), we observed a significant increase in TUNEL-positive cells in human spina bifida associated with a significantly decreased proliferation rate, indicating an alteration of the physiological cell rate homeostasis. LC3 distribution was found to be spatiotemporally regulated in both human and murine embryo-fetuses: in early pregnancy a diffuse and ubiquitous LC3 signal was detected. After neural tube closure, an intense LC3-positive signal, normally associated to extra energy requirement, was confined to the Lissauer's tract, the dorsolateral spinal zone containing centrally projecting axons from dorsal root ganglia, at any medullar levels. LC3 signal disappeared from 12 weeks of gestation. CONCLUSION: In conclusion, this study confirms the fundamental role of cell death/proliferation balance during central nervous system development and reports the changing expression of LC3 protein in mouse and human neural tube. Birth Defects Research (Part A) 106:104-113, 2016. © 2015 Wiley Periodicals, Inc.


Subject(s)
Cell Death , Cell Proliferation , Meningomyelocele/embryology , Microtubule-Associated Proteins/biosynthesis , Neural Tube/embryology , Spinal Dysraphism/embryology , Adult , Animals , Autophagy , Case-Control Studies , Female , Gestational Age , Humans , In Situ Nick-End Labeling , Male , Mice , Neural Tube/pathology , Pregnancy
11.
Pituitary ; 19(1): 50-6, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26350256

ABSTRACT

PURPOSE: Adamantinomatous craniopharyngiomas (aCPs) are complex epithelial neoplasms that arise from the progenitors of the pituitary gland. Although benign, these tumours can be locally aggressive invading vital neighbouring structures such as the hypothalamus, the cranial and optic nerves. Congenital forms of aCPs diagnosed during foetal development are very rare. The purpose of this article is to present with a histopathological and molecular characterisation of congenital craniopharyngioma. METHODS: Here we report a case of in utero diagnosed aCP, detected at 21 weeks of gestation by ultrasound, visualised by MRI at 22 weeks and histologically diagnosed at 23 weeks. We provide with histopathological characterisation of rare form of congenital aCPs. RESULTS: Detailed examination of the tumour reveals the classical histological hallmarks of aCPs with the presence of stellate reticulum, palisading epithelium, wet keratin and calcification deposits. The tumour demonstrated complete absence of all pituitary hormones and the absence of the neuroendocrine marker, synaptophysin. Immunohistochemistry against ß-catenin revealed occasional cells with nuclear-ß-catenin localisation and the presence of pituitary progenitors positive for SOX9 and SOX2. Targeted Sanger sequencing revealed no genetic variants in oncogenes CTNNB1 and BRAF, previously associated with CP. CONCLUSIONS: In this article, we provide with in-depth molecular and histological characterisation of in utero aCP due to an unknown driving mutation that could represent a sub-cohort of congenital aCPs.


Subject(s)
Craniopharyngioma/diagnosis , Brain Neoplasms/diagnosis , Female , Humans , Immunohistochemistry , In Vitro Techniques , Pituitary Gland/pathology , Pituitary Neoplasms/diagnosis , Pregnancy
12.
Development ; 138(22): 4931-42, 2011 Nov.
Article in English | MEDLINE | ID: mdl-22007134

ABSTRACT

The Wnt/ß-catenin pathway plays an essential role during regionalisation of the vertebrate neural plate and its inhibition in the most anterior neural ectoderm is required for normal forebrain development. Hesx1 is a conserved vertebrate-specific transcription factor that is required for forebrain development in Xenopus, mice and humans. Mouse embryos deficient for Hesx1 exhibit a variable degree of forebrain defects, but the molecular mechanisms underlying these defects are not fully understood. Here, we show that injection of a hesx1 morpholino into a 'sensitised' zygotic headless (tcf3) mutant background leads to severe forebrain and eye defects, suggesting an interaction between Hesx1 and the Wnt pathway during zebrafish forebrain development. Consistent with a requirement for Wnt signalling repression, we highlight a synergistic gene dosage-dependent interaction between Hesx1 and Tcf3, a transcriptional repressor of Wnt target genes, to maintain anterior forebrain identity during mouse embryogenesis. In addition, we reveal that Tcf3 is essential within the neural ectoderm to maintain anterior character and that its interaction with Hesx1 ensures the repression of Wnt targets in the developing forebrain. By employing a conditional loss-of-function approach in mouse, we demonstrate that deletion of ß-catenin, and concomitant reduction of Wnt signalling in the developing anterior forebrain of Hesx1-deficient embryos, leads to a significant rescue of the forebrain defects. Finally, transcriptional profiling of anterior forebrain precursors from mouse embryos expressing eGFP from the Hesx1 locus provides molecular evidence supporting a novel function of Hesx1 in mediating repression of Wnt/ß-catenin target activation in the developing forebrain.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors/physiology , Gene Expression Regulation, Developmental , Homeodomain Proteins/physiology , Prosencephalon/embryology , Repressor Proteins/physiology , Wnt Signaling Pathway/genetics , Animals , Basic Helix-Loop-Helix Transcription Factors/genetics , Basic Helix-Loop-Helix Transcription Factors/metabolism , Cells, Cultured , Down-Regulation/genetics , Embryo, Mammalian , Female , Gene Expression Profiling , Gene Expression Regulation, Developmental/physiology , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Microarray Analysis , Prosencephalon/metabolism , Prosencephalon/physiology , Repressor Proteins/genetics , Repressor Proteins/metabolism , Wnt Signaling Pathway/physiology , beta Catenin/genetics , beta Catenin/physiology
13.
Proc Natl Acad Sci U S A ; 108(28): 11482-7, 2011 Jul 12.
Article in English | MEDLINE | ID: mdl-21636786

ABSTRACT

Wingless (Wnt)/ß-catenin signaling plays an essential role during normal development, is a critical regulator of stem cells, and has been associated with cancer in many tissues. Here we demonstrate that genetic expression of a degradation-resistant mutant form of ß-catenin in early Rathke's pouch (RP) progenitors leads to pituitary hyperplasia and severe disruption of the pituitary-specific transcription factor 1-lineage differentiation resulting in extreme growth retardation and hypopituitarism. Mutant mice mostly die perinatally, but those that survive weaning develop lethal pituitary tumors, which closely resemble human adamantinomatous craniopharyngioma, an epithelial tumor associated with mutations in the human ß-catenin gene. The tumorigenic effect of mutant ß-catenin is observed only when expressed in undifferentiated RP progenitors, but tumors do not form when committed or differentiated cells are targeted to express this protein. Analysis of affected pituitaries indicates that expression of mutant ß-catenin leads to a significant increase in the total numbers of pituitary progenitor/stem cells as well as in their proliferation potential. Our findings provide insights into the role of the Wnt pathway in normal pituitary development and demonstrate a causative role for mutated ß-catenin in an undifferentiated RP progenitor in the genesis of murine and human craniopharyngioma.


Subject(s)
Pituitary Gland/cytology , Pituitary Gland/metabolism , Pituitary Neoplasms/etiology , Pituitary Neoplasms/metabolism , Stem Cells/cytology , Stem Cells/metabolism , Wnt Proteins/metabolism , Animals , Cell Differentiation , Craniopharyngioma/etiology , Craniopharyngioma/genetics , Craniopharyngioma/metabolism , Craniopharyngioma/pathology , Disease Models, Animal , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Humans , Mice , Mice, Mutant Strains , Mutant Proteins/genetics , Mutant Proteins/metabolism , Pituitary Gland/growth & development , Pituitary Neoplasms/genetics , Pituitary Neoplasms/pathology , Repressor Proteins/genetics , Repressor Proteins/metabolism , Signal Transduction , beta Catenin/genetics , beta Catenin/metabolism
14.
Dis Model Mech ; 16(3)2023 03 01.
Article in English | MEDLINE | ID: mdl-36916392

ABSTRACT

Understanding the molecular mechanisms that lead to birth defects is an important step towards improved primary prevention. Mouse embryos homozygous for the Kumba (Ku) mutant allele of Zic2 develop severe spina bifida with complete lack of dorsolateral hinge points (DLHPs) in the neuroepithelium. Bone morphogenetic protein (BMP) signalling is overactivated in Zic2Ku/Ku embryos, and the BMP inhibitor dorsomorphin partially rescues neural tube closure in cultured embryos. RhoA signalling is also overactivated, with accumulation of actomyosin in the Zic2Ku/Ku neuroepithelium, and the myosin inhibitor Blebbistatin partially normalises neural tube closure. However, dorsomorphin and Blebbistatin differ in their effects at tissue and cellular levels: DLHP formation is rescued by dorsomorphin but not Blebbistatin, whereas abnormal accumulation of actomyosin is rescued by Blebbistatin but not dorsomorphin. These findings suggest a dual mechanism of spina bifida origin in Zic2Ku/Ku embryos: faulty BMP-dependent formation of DLHPs and RhoA-dependent F-actin accumulation in the neuroepithelium. Hence, we identify a multi-pathway origin of spina bifida in a mammalian system that may provide a developmental basis for understanding the corresponding multifactorial human defects.


Subject(s)
Neural Tube Defects , Spinal Dysraphism , Mice , Animals , Humans , Neural Tube/metabolism , Actomyosin/metabolism , Neural Tube Defects/genetics , Neurulation , Mammals/metabolism , Nuclear Proteins/metabolism , Transcription Factors/metabolism
15.
Elife ; 122023 08 17.
Article in English | MEDLINE | ID: mdl-37589451

ABSTRACT

Co-regulated genes of the Imprinted Gene Network are involved in the control of growth and body size, and imprinted gene dysfunction underlies human paediatric disorders involving the endocrine system. Imprinted genes are highly expressed in the pituitary gland, among them, Dlk1, a paternally expressed gene whose membrane-bound and secreted protein products can regulate proliferation and differentiation of multiple stem cell populations. Dosage of circulating DLK1 has been previously implicated in the control of growth through unknown molecular mechanisms. Here we generate a series of mouse genetic models to modify levels of Dlk1 expression in the pituitary gland and demonstrate that the dosage of DLK1 modulates the process of stem cell commitment with lifelong impact on pituitary gland size. We establish that stem cells are a critical source of DLK1, where embryonic disruption alters proliferation in the anterior pituitary, leading to long-lasting consequences on growth hormone secretion later in life.


Subject(s)
Calcium-Binding Proteins , Cell Communication , Gene Dosage , Pituitary Gland , Animals , Humans , Mice , Biological Transport , Body Size , Calcium-Binding Proteins/genetics , Cell Differentiation
16.
Acta Neuropathol ; 124(2): 259-71, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22349813

ABSTRACT

Activating mutations in the gene encoding ß-catenin have been identified in the paediatric form of human craniopharyngioma (adamantinomatous craniopharyngioma, ACP), a histologically benign but aggressive pituitary tumour accounting for up to 10% of paediatric intracranial tumours. Recently, we generated an ACP mouse model and revealed that, as in human ACP, nucleocytoplasmic accumulation of ß-catenin (ß-cat(nc)) and over-activation of the Wnt/ß-catenin pathway occurs only in a very small proportion of cells, which form clusters. Here, combining mouse genetics, fluorescence labelling and flow-sorting techniques, we have isolated these cells from tumorigenic mouse pituitaries and shown that the ß-cat(nc) cells are enriched for colony-forming cells when cultured in stem cell-promoting media, and have longer telomeres, indicating shared properties with normal pituitary progenitors/stem cells (PSCs). Global gene profiling analysis has revealed that these ß-cat(nc) cells express high levels of secreted mitogenic signals, such as members of the SHH, BMP and FGF family, in addition to several chemokines and their receptors, suggesting an important autocrine/paracrine role of these cells in the pathogenesis of ACP and a reciprocal communication with their environment. Finally, we highlight the clinical relevance of these findings by showing that these pathways are also up-regulated in the ß-cat(nc) cell clusters identified in human ACP. As well as providing further support to the concept that pituitary stem cells may play an important role in the oncogenesis of human ACP, our data reveal novel disease biomarkers and potential pharmacological targets for the treatment of these devastating childhood tumours.


Subject(s)
Craniopharyngioma/genetics , Neoplastic Stem Cells , Pituitary Neoplasms/genetics , beta Catenin/genetics , Animals , Cells, Cultured , Craniopharyngioma/metabolism , Craniopharyngioma/pathology , Disease Models, Animal , Humans , Mice , Mutation , Pituitary Neoplasms/metabolism , Pituitary Neoplasms/pathology , Signal Transduction , Telomere/genetics , Telomere/metabolism , beta Catenin/metabolism
17.
Elife ; 112022 01 20.
Article in English | MEDLINE | ID: mdl-35049495

ABSTRACT

Genomic imprinting refers to the mono-allelic and parent-specific expression of a subset of genes. While long recognized for their role in embryonic development, imprinted genes have recently emerged as important modulators of postnatal physiology, notably through hypothalamus-driven functions. Here, using mouse models of loss, gain and parental inversion of expression, we report that the paternally expressed Zdbf2 gene controls neonatal growth in mice, in a dose-sensitive but parent-of-origin-independent manner. We further found that Zdbf2-KO neonates failed to fully activate hypothalamic circuits that stimulate appetite, and suffered milk deprivation and diminished circulating Insulin Growth Factor 1 (IGF-1). Consequently, only half of Zdbf2-KO pups survived the first days after birth and those surviving were smaller. This study demonstrates that precise imprinted gene dosage is essential for vital physiological functions at the transition from intra- to extra-uterine life, here the adaptation to oral feeding and optimized body weight gain.


Subject(s)
DNA-Binding Proteins/genetics , Eating/genetics , Genomic Imprinting/genetics , Hypothalamus , Weight Gain/genetics , Animals , Animals, Newborn/genetics , Animals, Newborn/physiology , Female , Hypothalamus/metabolism , Hypothalamus/physiology , Male , Mice , Mice, Knockout , Pregnancy
18.
Acta Neuropathol Commun ; 10(1): 138, 2022 09 16.
Article in English | MEDLINE | ID: mdl-36114575

ABSTRACT

Non-functioning pituitary tumours (NF-PitNETs) are common intracranial benign neoplasms that can exhibit aggressive behaviour by invading neighbouring structures and, in some cases, have multiple recurrences. Despite resulting in severe co-morbidities, no predictive biomarkers of recurrence have been identified for NF-PitNETs. In this study we have used high-throughput mass spectrometry-based analysis to examine the phosphorylation pattern of different subsets of NF-PitNETs. Based on histopathological, radiological, surgical and clinical features, we have grouped NF-PitNETs into non-invasive, invasive, and recurrent disease groups. Tumour recurrence was determined based on regular clinical and radiological data of patients for a mean follow-up of 10 years (SD ± 5.4 years). Phosphoproteomic analyses identified a unique phosphopeptide enrichment pattern which correlates with disease recurrence. Candidate phosphorylated proteins were validated in a large cohort of NF-PitNET patients by western blot and immunohistochemistry. We identified a cluster of 22 phosphopeptides upregulated in recurrent NF-PitNETs compared to non-invasive and invasive subgroups. We reveal significant phosphorylation of the ß-catenin at Ser552 in recurrent and invasive NF-PitNETs, compared to non-invasive/non-recurrent NF-PitNET subgroup. Moreover, ß-catenin pSer552 correlates with the recurrence free survival among 200 patients with NF-PitNET. Together, our results suggest that the phosphorylation status of ß-catenin at Ser552 could act as potential biomarker of tumour recurrence in NF-PitNETs.


Subject(s)
Neuroendocrine Tumors , Pituitary Neoplasms , Humans , Neoplasm Recurrence, Local , Neuroendocrine Tumors/metabolism , Phosphopeptides/metabolism , Phosphorylation , Pituitary Neoplasms/metabolism , beta Catenin/metabolism
19.
J Clin Endocrinol Metab ; 106(10): e4142-e4154, 2021 09 27.
Article in English | MEDLINE | ID: mdl-33999151

ABSTRACT

CONTEXT: Developmental disorders of the pituitary gland leading to congenital hypopituitarism can either be isolated or associated with extrapituitary abnormalities (syndromic hypopituitarism). A large number of syndromic hypopituitarism cases are linked to mutations in transcription factors. The forkhead box A2 (FOXA2) is a transcription factor that plays a key role in the central nervous system, foregut, and pancreatic development. OBJECTIVE: This work aims to characterize 2 patients with syndromic hypopituitarism due to FOXA2 gene defects. RESULTS: We report a novel heterozygous nonsense c.616C > T(p.Q206X) variant that leads to a truncated protein that lacks part of the DNA-binding domain of FOXA2, resulting in impaired transcriptional activation of the glucose transporter type 2 (GLUT2)-luciferase reporter. The patient is the sixth patient described in the literature with a FOXA2 mutation, and the first patient exhibiting pancreatic hypoplasia. We also report a second patient with a novel de novo 8.53 Mb deletion of 20p11.2 that encompasses FOXA2, who developed diabetes mellitus that responded to sulfonylurea treatment. CONCLUSION: Our 2 cases broaden the molecular and clinical spectrum of FOXA2-related disease, reporting the first nonsense mutation and the first case of pancreatic dysgenesis.


Subject(s)
Diabetes Mellitus/congenital , Hepatocyte Nuclear Factor 3-beta/genetics , Hypopituitarism/congenital , Pancreas/abnormalities , Pituitary Gland/abnormalities , Codon, Nonsense , Glucose Transporter Type 2/genetics , Humans , Infant , Male , Syndrome , Transcription Factors/genetics , Transcriptional Activation
20.
Oncogene ; 40(45): 6354-6368, 2021 11.
Article in English | MEDLINE | ID: mdl-34588620

ABSTRACT

It is unclear how loss-of-function germline mutations in the widely-expressed co-chaperone AIP, result in young-onset growth hormone secreting pituitary tumours. The RET receptor, uniquely co-expressed in somatotrophs with PIT1, induces apoptosis when unliganded, while RET supports cell survival when it is bound to its ligand. We demonstrate that at the plasma membrane, AIP is required to form a complex with monomeric-intracellular-RET, caspase-3 and PKCδ resulting in PIT1/CDKN2A-ARF/p53-apoptosis pathway activation. AIP-deficiency blocks RET/caspase-3/PKCδ activation preventing PIT1 accumulation and apoptosis. The presence or lack of the inhibitory effect on RET-induced apoptosis separated pathogenic AIP variants from non-pathogenic ones. We used virogenomics in neonatal rats to demonstrate the effect of mutant AIP protein on the RET apoptotic pathway in vivo. In adult male rats altered AIP induces elevated IGF-1 and gigantism, with pituitary hyperplasia through blocking the RET-apoptotic pathway. In females, pituitary hyperplasia is induced but IGF-1 rise and gigantism are blunted by puberty. Somatotroph adenomas from pituitary-specific Aip-knockout mice overexpress the RET-ligand GDNF, therefore, upregulating the survival pathway. Somatotroph adenomas from patients with or without AIP mutation abundantly express GDNF, but AIP-mutated tissues have less CDKN2A-ARF expression. Our findings explain the tissue-specific mechanism of AIP-induced somatotrophinomas and provide a previously unknown tumorigenic mechanism, opening treatment avenues for AIP-related tumours.


Subject(s)
Acromegaly/genetics , Germ-Line Mutation , Gigantism/genetics , Growth Hormone-Secreting Pituitary Adenoma/genetics , Intracellular Signaling Peptides and Proteins/genetics , Acromegaly/metabolism , Animals , Animals, Newborn , Apoptosis , Cell Line , Female , Gene Knockout Techniques , Gigantism/metabolism , Glial Cell Line-Derived Neurotrophic Factor/metabolism , Growth Hormone-Secreting Pituitary Adenoma/metabolism , Humans , Insulin-Like Growth Factor I/metabolism , Male , Mice , Organ Specificity , Proto-Oncogene Proteins c-ret/metabolism , Rats , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL