ABSTRACT
Mitochondrial loss and dysfunction drive T cell exhaustion, representing major barriers to successful T cell-based immunotherapies. Here, we describe an innovative platform to supply exogenous mitochondria to T cells, overcoming these limitations. We found that bone marrow stromal cells establish nanotubular connections with T cells and leverage these intercellular highways to transplant stromal cell mitochondria into CD8+ T cells. Optimal mitochondrial transfer required Talin 2 on both donor and recipient cells. CD8+ T cells with donated mitochondria displayed enhanced mitochondrial respiration and spare respiratory capacity. When transferred into tumor-bearing hosts, these supercharged T cells expanded more robustly, infiltrated the tumor more efficiently, and exhibited fewer signs of exhaustion compared with T cells that did not take up mitochondria. As a result, mitochondria-boosted CD8+ T cells mediated superior antitumor responses, prolonging animal survival. These findings establish intercellular mitochondrial transfer as a prototype of organelle medicine, opening avenues to next-generation cell therapies.
ABSTRACT
Stem cells are maintained by transcriptional programs that promote self-renewal and repress differentiation. Here, we found that the transcription factor c-Myb was essential for generating and maintaining stem cells in the CD8+ T cell memory compartment. Following viral infection, CD8+ T cells lacking Myb underwent terminal differentiation and generated fewer stem cell-like central memory cells than did Myb-sufficient T cells. c-Myb acted both as a transcriptional activator of Tcf7 (which encodes the transcription factor Tcf1) to enhance memory development and as a repressor of Zeb2 (which encodes the transcription factor Zeb2) to hinder effector differentiation. Domain-mutagenesis experiments revealed that the transactivation domain of c-Myb was necessary for restraining differentiation, whereas its negative regulatory domain was critical for cell survival. Myb overexpression enhanced CD8+ T cell memory formation, polyfunctionality and recall responses that promoted curative antitumor immunity after adoptive transfer. These findings identify c-Myb as a pivotal regulator of CD8+ T cell stemness and highlight its therapeutic potential.
Subject(s)
CD8-Positive T-Lymphocytes/immunology , Immunologic Memory/immunology , Neoplasms, Experimental/immunology , Proto-Oncogene Proteins c-myb/immunology , Stem Cells/immunology , Animals , CD8-Positive T-Lymphocytes/metabolism , CD8-Positive T-Lymphocytes/virology , Cell Differentiation/immunology , Cell Line, Tumor , HEK293 Cells , Humans , Immunologic Memory/genetics , Lymphocytic Choriomeningitis/immunology , Lymphocytic Choriomeningitis/metabolism , Lymphocytic Choriomeningitis/virology , Lymphocytic choriomeningitis virus/immunology , Lymphocytic choriomeningitis virus/physiology , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Neoplasms, Experimental/metabolism , Neoplasms, Experimental/virology , Proto-Oncogene Proteins c-myb/genetics , Proto-Oncogene Proteins c-myb/metabolism , Stem Cells/metabolism , Stem Cells/virology , T Cell Transcription Factor 1/genetics , T Cell Transcription Factor 1/immunology , T Cell Transcription Factor 1/metabolismABSTRACT
Interleukin (IL)-2 and IL-21 dichotomously shape CD8+ T cell differentiation. IL-2 drives terminal differentiation, generating cells that are poorly effective against tumors, whereas IL-21 promotes stem cell memory T cells (TSCM) and antitumor responses. Here we investigated the role of metabolic programming in the developmental differences induced by these cytokines. IL-2 promoted effector-like metabolism and aerobic glycolysis, robustly inducing lactate dehydrogenase (LDH) and lactate production, whereas IL-21 maintained a metabolically quiescent state dependent on oxidative phosphorylation. LDH inhibition rewired IL-2-induced effects, promoting pyruvate entry into the tricarboxylic acid cycle and inhibiting terminal effector and exhaustion programs, including mRNA expression of members of the NR4A family of nuclear receptors, as well as Prdm1 and Xbp1 While deletion of Ldha prevented development of cells with antitumor effector function, transient LDH inhibition enhanced the generation of memory cells capable of triggering robust antitumor responses after adoptive transfer. LDH inhibition did not significantly affect IL-21-induced metabolism but caused major transcriptomic changes, including the suppression of IL-21-induced exhaustion markers LAG3, PD1, 2B4, and TIM3. LDH inhibition combined with IL-21 increased the formation of TSCM cells, resulting in more profound antitumor responses and prolonged host survival. These findings indicate a pivotal role for LDH in modulating cytokine-mediated T cell differentiation and underscore the therapeutic potential of transiently inhibiting LDH during adoptive T cell-based immunotherapy, with an unanticipated cooperative antitumor effect of LDH inhibition and IL-21.
Subject(s)
CD8-Positive T-Lymphocytes/immunology , Enzyme Inhibitors/pharmacology , Interleukins/metabolism , L-Lactate Dehydrogenase/antagonists & inhibitors , Melanoma, Experimental/therapy , Stem Cells/immunology , Animals , CD8-Positive T-Lymphocytes/drug effects , CD8-Positive T-Lymphocytes/metabolism , CD8-Positive T-Lymphocytes/transplantation , Cell Differentiation/drug effects , Cell Differentiation/immunology , Cell Line, Tumor/transplantation , Humans , Immunologic Memory , Immunotherapy, Adoptive/methods , Interleukin-2/immunology , Interleukin-2/metabolism , Interleukins/immunology , L-Lactate Dehydrogenase/metabolism , Melanoma, Experimental/immunology , Mice , Primary Cell Culture , Stem Cells/drug effects , Stem Cells/metabolismABSTRACT
Long-lived, self-renewing, multipotent T memory stem cells (TSCM) can trigger profound and sustained tumor regression but their rareness poses a major hurdle to their clinical application. Presently, clinically compliant procedures to generate relevant numbers of this T-cell population are undefined. Here, we provide a strategy for deriving large numbers of clinical-grade tumor-redirected TSCM starting from naive precursors. CD8(+)CD62L(+)CD45RA(+) naive T cells enriched by streptamer-based serial-positive selection were activated by CD3/CD28 engagement in the presence of interleukin-7 (IL-7), IL-21, and the glycogen synthase-3ß inhibitor TWS119, and genetically engineered to express a CD19-specific chimeric antigen receptor (CD19-CAR). These conditions enabled the generation of CD19-CAR-modified CD8(+) TSCM that were phenotypically, functionally, and transcriptomically equivalent to their naturally occurring counterpart. Compared with CD8(+) T cells generated with clinical protocols currently under investigation, CD19-CAR-modified CD8(+) TSCM exhibited enhanced metabolic fitness and mediated robust, long-lasting antitumor responses against systemic acute lymphoblastic leukemia xenografts. This clinical-grade platform provides the basis for a phase 1 trial evaluating the activity of CD19-CAR-modified CD8(+) TSCM in patients with B-cell malignancies refractory to prior allogeneic hematopoietic stem cell transplantation.
Subject(s)
Adoptive Transfer , Antigens, CD19/immunology , B-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/transplantation , Hematologic Neoplasms/therapy , Immunologic Memory , Receptors, Antigen, T-Cell/immunology , Animals , Antigens, CD19/genetics , B-Lymphocytes/pathology , CD8-Positive T-Lymphocytes/immunology , Cell Line, Tumor , Hematologic Neoplasms/genetics , Hematologic Neoplasms/immunology , Humans , Mice , Mice, Inbred NOD , Mice, SCID , Receptors, Antigen, T-Cell/genetics , Xenograft Model Antitumor AssaysABSTRACT
Lymphodepleting regimens are used before adoptive immunotherapy to augment the antitumor efficacy of transferred T cells by removing endogenous homeostatic "cytokine sinks." These conditioning modalities, however, are often associated with severe toxicities. We found that microRNA-155 (miR-155) enabled tumor-specific CD8(+) T cells to mediate profound antitumor responses in lymphoreplete hosts that were not potentiated by immune-ablation. miR-155 enhanced T-cell responsiveness to limited amounts of homeostatic γc cytokines, resulting in delayed cellular contraction and sustained cytokine production. miR-155 restrained the expression of the inositol 5-phosphatase Ship1, an inhibitor of the serine-threonine protein kinase Akt, and multiple negative regulators of signal transducer and activator of transcription 5 (Stat5), including suppressor of cytokine signaling 1 (Socs1) and the protein tyrosine phosphatase Ptpn2. Expression of constitutively active Stat5a recapitulated the survival advantages conferred by miR-155, whereas constitutive Akt activation promoted sustained effector functions. Our results indicate that overexpression of miR-155 in tumor-specific T cells can be used to increase the effectiveness of adoptive immunotherapies in a cell-intrinsic manner without the need for life-threatening, lymphodepleting maneuvers.
Subject(s)
CD8-Positive T-Lymphocytes/immunology , Cytokines/immunology , MicroRNAs/genetics , MicroRNAs/immunology , Animals , Base Sequence , Cell Line, Tumor , Cytokines/biosynthesis , HEK293 Cells , Humans , Immunotherapy, Adoptive , Melanoma, Experimental/genetics , Melanoma, Experimental/immunology , Melanoma, Experimental/therapy , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , MicroRNAs/metabolism , Proto-Oncogene Proteins c-akt/metabolism , STAT5 Transcription Factor/metabolism , Signal Transduction , gp100 Melanoma Antigen/genetics , gp100 Melanoma Antigen/immunologyABSTRACT
T cell senescence and exhaustion are major barriers to successful cancer immunotherapy. Here we show that miR-155 increases CD8+ T cell antitumor function by restraining T cell senescence and functional exhaustion through epigenetic silencing of drivers of terminal differentiation. miR-155 enhances Polycomb repressor complex 2 (PRC2) activity indirectly by promoting the expression of the PRC2-associated factor Phf19 through downregulation of the Akt inhibitor, Ship1. Phf19 orchestrates a transcriptional program extensively shared with miR-155 to restrain T cell senescence and sustain CD8+ T cell antitumor responses. These effects rely on Phf19 histone-binding capacity, which is critical for the recruitment of PRC2 to the target chromatin. These findings establish the miR-155-Phf19-PRC2 as a pivotal axis regulating CD8+ T cell differentiation, thereby paving new ways for potentiating cancer immunotherapy through epigenetic reprogramming of CD8+ T cell fate.
Subject(s)
CD8-Positive T-Lymphocytes/immunology , Melanoma, Experimental/immunology , MicroRNAs/metabolism , Skin Neoplasms/immunology , Transcription Factors/metabolism , Adoptive Transfer/methods , Animals , CD8-Positive T-Lymphocytes/metabolism , CD8-Positive T-Lymphocytes/transplantation , Cell Differentiation/genetics , Cell Differentiation/immunology , Cellular Senescence/genetics , Cellular Senescence/immunology , Epigenesis, Genetic/immunology , Female , Gene Expression Regulation, Neoplastic , Humans , Melanoma, Experimental/genetics , Melanoma, Experimental/therapy , Mice , Mice, Inbred C57BL , Mice, Knockout , Phosphatidylinositol-3,4,5-Trisphosphate 5-Phosphatases/genetics , Phosphatidylinositol-3,4,5-Trisphosphate 5-Phosphatases/metabolism , Polycomb Repressive Complex 2/immunology , Polycomb Repressive Complex 2/metabolism , Skin Neoplasms/genetics , Skin Neoplasms/therapy , Transcription Factors/genetics , Transcription Factors/immunologyABSTRACT
Adoptive T cell transfer (ACT) immunotherapy benefits from early differentiated stem cell memory T (Tscm) cells capable of persisting in the long term and generating potent antitumor effectors. Due to their paucity ex vivo, Tscm cells can be derived from naive precursors, but the molecular signals at the basis of Tscm cell generation are ill-defined. We found that less differentiated human circulating CD8+ T cells display substantial antioxidant capacity ex vivo compared with more differentiated central and effector memory T cells. Limiting ROS metabolism with antioxidants during naive T cell activation hindered terminal differentiation, while allowing expansion and generation of Tscm cells. N-acetylcysteine (NAC), the most effective molecule in this regard, induced transcriptional and metabolic programs characteristic of self-renewing memory T cells. Upon ACT, NAC-generated Tscm cells established long-term memory in vivo and exerted more potent antitumor immunity in a xenogeneic model when redirected with CD19-specific CAR, highlighting the translational relevance of NAC as a simple and inexpensive method to improve ACT.
Subject(s)
Antineoplastic Agents/immunology , Antioxidants/metabolism , Antioxidants/pharmacology , CD8-Positive T-Lymphocytes/drug effects , Stem Cells/drug effects , Animals , Antigens, CD19 , Cell Differentiation/drug effects , Female , Gene Expression Profiling , Humans , Immunity, Cellular , Immunologic Memory , Immunotherapy, Adoptive , Male , Mice , Mice, Inbred NODABSTRACT
Severe congenital neutropenia (SCN) is characterised by a differentiation block in the bone marrow and low neutrophil numbers in the peripheral blood, which correlates with increased risk of bacterial infections. Several underlying gene defects have been identified in SCN patients. Mutations in the neutrophil elastase (ELANE) gene are frequently found in SCN and cyclic neutropenia. Both mislocalization and misfolding of mutant neutrophil elastase protein resulting in ER stress and subsequent induction of the unfolded protein response (UPR) have been proposed to be responsible for neutrophil survival and maturation defects. However, the detailed molecular mechanisms still remain unclear, in part due to the lack of appropriate in vitro and in vivo models. Here we used a system of neutrophil differentiation from immortalised progenitor lines by conditional expression of Hoxb8, permitting the generation of mature near-primary neutrophils in vitro and in vivo. NE-deficient Hoxb8 progenitors were reconstituted with murine and human forms of typical NE mutants representative of SCN and cyclic neutropenia, and differentiation of the cells was analysed in vitro and in vivo. ER stress induction by NE mutations could be recapitulated during neutrophil differentiation in all NE mutant-reconstituted Hoxb8 cells. Despite ER stress induction, no change in survival, maturation or function of differentiating cells expressing either murine or human NE mutants was observed. Further analysis of in vivo differentiation of Hoxb8 cells in a murine model of adoptive transfer did not reveal any defects in survival or differentiation in the mouse. Although the Hoxb8 system has been found to be useful for dissection of defects in neutrophil development, our findings indicate that the use of murine systems for analysis of NE-mutation-associated pathogenesis is complicated by differences between humans and mice in the physiology of granulopoiesis, which may go beyond possible differences in expression and activity of neutrophil elastase itself.
Subject(s)
Leukocyte Elastase/genetics , Leukopoiesis , Neutropenia/genetics , Neutrophils/cytology , Animals , Cell Survival , Disease Models, Animal , HEK293 Cells , Homeodomain Proteins/genetics , Humans , Leukocyte Elastase/deficiency , Mice , Mice, Inbred C57BL , Mutation , Neutropenia/enzymology , Neutrophils/enzymology , Species SpecificityABSTRACT
Acute graft-versus-host disease (GVHD) considerably limits wider usage of allogeneic hematopoietic cell transplantation (allo-HCT). Antigen-presenting cells and T cells are populations customarily associated with GVHD pathogenesis. Of note, neutrophils are the largest human white blood cell population. The cells cleave chemokines and produce reactive oxygen species, thereby promoting T cell activation. Therefore, during an allogeneic immune response, neutrophils could amplify tissue damage caused by conditioning regimens. We analyzed neutrophil infiltration of the mouse ileum after allo-HCT by in vivo myeloperoxidase imaging and found that infiltration levels were dependent on the local microbial flora and were not detectable under germ-free conditions. Physical or genetic depletion of neutrophils reduced GVHD-related mortality. The contribution of neutrophils to GVHD severity required reactive oxygen species (ROS) because selective Cybb (encoding cytochrome b-245, beta polypeptide, also known as NOX2) deficiency in neutrophils impairing ROS production led to lower levels of tissue damage, GVHD-related mortality and effector phenotype T cells. Enhanced survival of Bcl-xL transgenic neutrophils increased GVHD severity. In contrast, when we transferred neutrophils lacking Toll-like receptor-2 (TLR2), TLR3, TLR4, TLR7 and TLR9, which are normally less strongly activated by translocating bacteria, into wild-type C57BL/6 mice, GVHD severity was reduced. In humans, severity of intestinal GVHD strongly correlated with levels of neutrophils present in GVHD lesions. This study describes a new potential role for neutrophils in the pathogenesis of GVHD in both mice and humans.
Subject(s)
Graft vs Host Disease/immunology , Hematopoietic Stem Cell Transplantation/adverse effects , Ileum/immunology , Microbiota/immunology , Neutrophils/immunology , Animals , Busulfan , Cyclophosphamide , Flow Cytometry , Freund's Adjuvant , Graft vs Host Disease/physiopathology , Histological Techniques , Ileum/microbiology , Immunohistochemistry , Kaplan-Meier Estimate , Luciferases , Magnetic Resonance Imaging , Membrane Glycoproteins/genetics , Mice , Mice, Inbred C57BL , Mice, Knockout , Microarray Analysis , NADPH Oxidase 2 , NADPH Oxidases/genetics , Peroxidase , Reactive Oxygen Species/metabolismABSTRACT
Neutrophil granulocyte (neutrophil) apoptosis plays a key role in determining inflammation in infectious and non-infectious settings. Recent work has shown that inhibitors of cyclin-dependent kinases (cdk) such as roscovitine can potently induce neutrophil apoptosis and reduce inflammation. Using a conditional Hoxb8-expression system we tested the participation of Bcl-2-family proteins to roscovitine-induced apoptosis in mouse neutrophils and in neutrophil progenitor cells. Bcl-2 strongly protected against roscovitine-induced apoptosis in neutrophils. The isolated loss of either Bim or noxa provided significant, partial protection while protection through combined loss of Bim and noxa or Bim and Puma was only slightly greater than this individual loss. The only substantial change in protein levels observed was the loss of Mcl-1, which was not transcriptional and was inhibited by proteasome blockade. In progenitor cells there was no protection by the loss of Bim alone but substantial protection by the loss of both Bim and Puma; surprisingly, strongest protection was seen by the isolated loss of noxa. The pattern of protein expression and Mcl-1-regulation in progenitor cells was very similar to the one observed in differentiated neutrophils. In addition, roscovitine strongly inhibited proliferation in progenitor cells, associated with an accumulation of cells in G2/M-phase.