Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
1.
Mol Pharmacol ; 105(5): 328-347, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38458772

ABSTRACT

Plant extracts have played a significant role in traditional medicine for centuries, contributing to improved health and the treatment of various human illnesses. G protein-coupled receptors (GPCRs) are crucial in numerous physiologic functions, and there is growing evidence suggesting their involvement in the therapeutic effects of many plant extracts. In recent years, scientists have identified an expanding number of isolated molecules responsible for the biologic activity of these extracts, with many believed to act on GPCRs. This article critically reviews the evidence supporting the modulation of GPCR function by these plant-derived molecules through direct binding. Structural information is now available for some of these molecules, allowing for a comparison of their binding mode with that of endogenous GPCR ligands. The final section explores future trends and challenges, focusing on the identification of new plant-derived molecules with both orthosteric and allosteric binding modes, as well as innovative strategies for designing GPCR ligands inspired by these plant-derived compounds. In conclusion, plant-derived molecules are anticipated to play an increasingly vital role as therapeutic drugs and serve as templates for drug design. SIGNIFICANCE STATEMENT: This minireview summarizes the most pertinent publications on isolated plant-derived molecules interacting with G protein-coupled receptors (GPCRs) and comments on available structural information on GPCR/plant-derived ligand pairs. Future challenges and trends for the isolation and characterization of plant-derived molecules and drug design are discussed.


Subject(s)
Receptors, G-Protein-Coupled , Signal Transduction , Humans , Receptors, G-Protein-Coupled/metabolism , Ligands , Drug Design , Plant Extracts , Allosteric Regulation
2.
Arch Pharm (Weinheim) ; 356(9): e2300149, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37339785

ABSTRACT

Anticancer drug conjugates are an emerging approach for future cancer treatment. Here, we report a series of hybrid ligands merging the neurohormone melatonin with the approved histone deacetylase (HDAC) inhibitor vorinostat, using melatonin's amide side chain (3a-e), its indolic nitrogen (5a-d), and its ether oxygen (7a-d) as attachment points. Several hybrid ligands showed higher potency thanvorinostat in both HDAC inhibition and cellular assays on different cultured cancer cell lines. In the most potent HDAC1 and HDAC6 inhibitors, 3e, 5c, and 7c, the hydroxamic acid moiety of vorinostat is linked to melatonin through a hexamethylene spacer. Hybrid ligands 5c and 7c were also found to be potent growth inhibitors of MCF-7, PC-3M-Luc, and HL-60 cancer cell lines. As these compounds showed only weak agonist activity at melatonin MT1 receptors, the findings indicate that their anticancer actions are driven by HDAC inhibition.


Subject(s)
Antineoplastic Agents , Melatonin , Neoplasms , Vorinostat/pharmacology , Histone Deacetylases/metabolism , Histone Deacetylases/pharmacology , Melatonin/pharmacology , Ligands , Structure-Activity Relationship , Histone Deacetylase Inhibitors/pharmacology , Histone Deacetylase Inhibitors/chemistry , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Hydroxamic Acids/pharmacology , Cell Line, Tumor , Cell Proliferation , Histone Deacetylase 1/metabolism , Histone Deacetylase 1/pharmacology , Histone Deacetylase 6
3.
FASEB J ; 35(1): e21161, 2021 01.
Article in English | MEDLINE | ID: mdl-33156577

ABSTRACT

Association of G protein-coupled receptors into heterodimeric complexes has been reported for over 50 receptor pairs in vitro but functional in vivo validation remains a challenge. Our recent in vitro studies defined the functional fingerprint of heteromers composed of Gi -coupled melatonin MT2 receptors and Gq -coupled serotonin 5-HT2C receptors, in which melatonin transactivates phospholipase C (PLC) through 5-HT2C . Here, we identified this functional fingerprint in the mouse brain. Gq protein activation was probed by [35 S]GTPγS incorporation followed by Gq immunoprecipitation, and PLC activation by determining the inositol phosphate levels in brain lysates of animals previously treated with melatonin. Melatonin concentration-dependently activated Gq proteins and PLC in the hypothalamus and cerebellum but not in cortex. These effects were inhibited by the 5-HT2C receptor-specific inverse agonist SB-243213, and were absent in MT2 and 5-HT2C knockout mice, fully recapitulating previous in vitro data and indicating the involvement of MT2 /5-HT2C heteromers. The antidepressant agomelatine had a similar effect than melatonin when applied alone but blocked the melatonin-promoted Gq activation due to its 5-HT2C antagonistic component. Collectively, we provide strong functional evidence for the existence of MT2 /5-HT2C heteromeric complexes in mouse brain. These heteromers might participate in the in vivo effects of agomelatine.


Subject(s)
Brain/metabolism , Gene Expression Regulation, Enzymologic , Protein Multimerization , Receptor, Melatonin, MT2/metabolism , Receptor, Serotonin, 5-HT2C/metabolism , Transcriptional Activation , Type C Phospholipases/biosynthesis , Acetamides/pharmacology , Animals , Indoles/pharmacology , Male , Mice , Mice, Knockout , Pyridines/pharmacology , Receptor, Melatonin, MT2/genetics , Receptor, Serotonin, 5-HT2C/genetics , Type C Phospholipases/genetics
4.
J Pineal Res ; 66(2): e12540, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30475390

ABSTRACT

Melatonin receptors play important roles in the regulation of circadian and seasonal rhythms, sleep, retinal functions, the immune system, depression, and type 2 diabetes development. Melatonin receptors are approved drug targets for insomnia, non-24-hour sleep-wake disorders, and major depressive disorders. In mammals, two melatonin receptors (MTRs) exist, MT1 and MT2 , belonging to the G protein-coupled receptor (GPCR) superfamily. Similar to most other GPCRs, reliable antibodies recognizing melatonin receptors proved to be difficult to obtain. Here, we describe the development of the first monoclonal antibodies (mABs) for mouse MT1 and MT2 . Purified antibodies were extensively characterized for specific reactivity with mouse, rat, and human MT1 and MT2 by Western blot, immunoprecipitation, immunofluorescence, and proximity ligation assay. Several mABs were specific for either mouse MT1 or MT2 . None of the mABs cross-reacted with rat MTRs, and some were able to react with human MTRs. The specificity of the selected mABs was validated by immunofluorescence microscopy in three established locations (retina, suprachiasmatic nuclei, pituitary gland) for MTR expression in mice using MTR-KO mice as control. MT2 expression was not detected in mouse insulinoma MIN6 cells or pancreatic beta-cells. Collectively, we report the first monoclonal antibodies recognizing recombinant and native mouse melatonin receptors that will be valuable tools for future studies.


Subject(s)
Antibodies, Monoclonal/immunology , Antibody Specificity/immunology , Receptor, Melatonin, MT1/analysis , Receptor, Melatonin, MT2/analysis , Animals , Mice , Protein Domains , Receptor, Melatonin, MT1/immunology , Receptor, Melatonin, MT2/immunology
5.
Bioorg Chem ; 85: 349-356, 2019 04.
Article in English | MEDLINE | ID: mdl-30658234

ABSTRACT

A series of dimeric melatonin analogues 3a-e obtained by connecting two melatonin molecules through the methoxy oxygen atoms with spacers spanning 16-24 atoms and the agomelatine dimer 7 were synthesized and characterized in 2-[125-I]-iodomelatonin binding assays, bioluminescence resonance energy transfer (BRET) experiments, and in functional cAMP and ß-arrestin recruitment assays at MT1 and MT2 receptors. The binding affinity of 3a-e generally increased with increasing linker length. Bivalent ligands 3a-e increased BRET signals of MT1 dimers up to 3-fold compared to the monomeric control ligand indicating the simultaneous binding of the two pharmacophores to dimeric receptors. Bivalent ligands 3c and 7 exhibited important changes in functional properties on the Gi/cAMP pathway but not on the ß-arrestin pathway compared to their monomeric counterparts. Interestingly, 3c (20 atoms spacer) shows inverse agonistic properties at MT2 on the Gi/cAMP pathway. In conclusion, these findings indicate that O-linked melatonin dimers are promising tools to develop signaling pathway-based bivalent melatonin receptor ligands.


Subject(s)
Melatonin/analogs & derivatives , Melatonin/pharmacology , Receptor, Melatonin, MT1/agonists , Receptor, Melatonin, MT2/agonists , Bioluminescence Resonance Energy Transfer Techniques , Cyclic AMP/metabolism , Drug Inverse Agonism , HEK293 Cells , Humans , Ligands , Melatonin/metabolism , Molecular Structure , Protein Multimerization/drug effects , Receptor, Melatonin, MT1/metabolism , Receptor, Melatonin, MT2/metabolism , beta-Arrestins/metabolism
6.
J Biol Chem ; 290(18): 11537-46, 2015 May 01.
Article in English | MEDLINE | ID: mdl-25770211

ABSTRACT

Inasmuch as the neurohormone melatonin is synthetically derived from serotonin (5-HT), a close interrelationship between both has long been suspected. The present study reveals a hitherto unrecognized cross-talk mediated via physical association of melatonin MT2 and 5-HT2C receptors into functional heteromers. This is of particular interest in light of the "synergistic" melatonin agonist/5-HT2C antagonist profile of the novel antidepressant agomelatine. A suite of co-immunoprecipitation, bioluminescence resonance energy transfer, and pharmacological techniques was exploited to demonstrate formation of functional MT2 and 5-HT2C receptor heteromers both in transfected cells and in human cortex and hippocampus. MT2/5-HT2C heteromers amplified the 5-HT-mediated Gq/phospholipase C response and triggered melatonin-induced unidirectional transactivation of the 5-HT2C protomer of MT2/5-HT2C heteromers. Pharmacological studies revealed distinct functional properties for agomelatine, which shows "biased signaling." These observations demonstrate the existence of functionally unique MT2/5-HT2C heteromers and suggest that the antidepressant agomelatine has a distinctive profile at these sites potentially involved in its therapeutic effects on major depression and generalized anxiety disorder. Finally, MT2/5-HT2C heteromers provide a new strategy for the discovery of novel agents for the treatment of psychiatric disorders.


Subject(s)
Melatonin/metabolism , Protein Multimerization , Receptor, Melatonin, MT2/chemistry , Receptor, Serotonin, 5-HT2C/chemistry , Serotonin/metabolism , Signal Transduction , Acetamides/pharmacology , Arrestins/metabolism , Drug Synergism , Gene Expression Regulation/drug effects , HEK293 Cells , HeLa Cells , Humans , Melatonin/pharmacology , Protein Multimerization/drug effects , Protein Structure, Quaternary , Protein Transport/drug effects , Receptor, Melatonin, MT1/metabolism , Receptor, Melatonin, MT2/genetics , Receptor, Melatonin, MT2/metabolism , Receptor, Serotonin, 5-HT2C/genetics , Receptor, Serotonin, 5-HT2C/metabolism , Serotonin/pharmacology , Signal Transduction/drug effects , Transcriptional Activation/drug effects , Transcriptional Activation/genetics , Type C Phospholipases/metabolism , beta-Arrestins
7.
Blood ; 119(21): 4908-18, 2012 May 24.
Article in English | MEDLINE | ID: mdl-22496149

ABSTRACT

Human cytomegalovirus (HCMV) encodes four 7-transmembrane-spanning (7TM) proteins, US28, US27, UL33, and UL78, which present important sequence homology with human chemokine receptors. Whereas US28 binds a large range of chemokines and disturbs host cell signaling at different levels, the others are orphans with largely unknown functions. Assembly of 2 different 7TM proteins into hetero-oligomeric complexes may profoundly change their respective functional properties. We show that HCMV-encoded UL33 and UL78 form heteromers with CCR5 and CXCR4 chemokine receptors in transfected human embryonic kidney 293T cells and monocytic THP-1 cells. Expression of UL33 and UL78 had pleiotropic, predominantly negative, effects on CCR5 and CXCR4 cell surface expression, ligand-induced internalization, signal transduction, and migration without modifying the chemokine binding properties of CCR5 and CXCR4. Importantly, the coreceptor activity of CCR5 and CXCR4 for HIV was largely impaired in the presence of UL33 and UL78 without affecting expression of the primary HIV entry receptor CD4 and its interaction with CCR5 and CXCR4. Collectively, we identified the first molecular function for the HCMV-encoded orphan UL33 and UL78 7TM proteins, namely the regulation of cellular chemokine receptors through receptor heteromerization.


Subject(s)
Membrane Proteins/metabolism , Protein Multimerization , Receptors, CCR5/metabolism , Receptors, CXCR4/metabolism , Receptors, Chemokine/metabolism , Receptors, HIV/metabolism , Viral Proteins/metabolism , Cells, Cultured , Coinfection/metabolism , Cytomegalovirus Infections/metabolism , Cytomegalovirus Infections/virology , HEK293 Cells , HIV Infections/metabolism , HIV Infections/prevention & control , HIV Infections/virology , Humans , Membrane Proteins/physiology , Protein Binding/physiology , Protein Multimerization/physiology , Receptors, Chemokine/physiology , Receptors, HIV/physiology , Viral Interference/physiology , Viral Proteins/physiology
8.
Pharmaceutics ; 15(7)2023 Jun 28.
Article in English | MEDLINE | ID: mdl-37514032

ABSTRACT

Melatonin is a tryptophan derivative synthesized in plants and animals. In humans, melatonin acts on melatonin MT1 and MT2 receptors belonging to the G protein-coupled receptor (GPCR) family. Synthetic melatonin receptor agonists are prescribed for insomnia and depressive and circadian-related disorders. Here, we tested 25 commercial plant extracts, reported to have beneficial properties in sleep disorders and anxiety, using cellular assays (2─[125I]iodomelatonin binding, cAMP inhibition, ERK1/2 activation and ß-arrestin2 recruitment) in mock-transfected and HEK293 cells expressing MT1 or MT2. Various melatonin receptor-dependent and -independent effects were observed. Extract 18 (Ex18) from Pistacia vera dried fruits stood out with very potent effects in melatonin receptor expressing cells. The high content of endogenous melatonin in Ex18 (5.28 ± 0.46 mg/g extract) is consistent with this observation. Ex18 contains an additional active principle that potentiates the effect of melatonin on Gi protein-dependent pathways but not on ß-arrestin2 recruitment. Further active principles potentiating exogenous melatonin were detected in several extracts. In conclusion, we identified plant extracts with various effects in GPCR-based binding and signalling assays and identified high melatonin levels and a melatonin-potentiating activity in Pistacia vera dried fruit extracts that might be of therapeutic potential.

9.
Eur J Med Chem ; 249: 115152, 2023 Mar 05.
Article in English | MEDLINE | ID: mdl-36724633

ABSTRACT

COVID-19 is a complex disease with short-term and long-term respiratory, inflammatory and neurological symptoms that are triggered by the infection with SARS-CoV-2. As many drugs targeting single targets showed only limited effectiveness against COVID-19, here, we aimed to explore a multi-target strategy. We synthesized a focused compound library based on C2-substituted indolealkylamines (tryptamines and 5-hydroxytryptamines) with activity for three potential COVID-19-related proteins, namely melatonin receptors, calmodulin and human angiotensin converting enzyme 2 (hACE2). Two molecules from the library, 5e and h, exhibit affinities in the high nanomolar range for melatonin receptors, inhibit the calmodulin-dependent calmodulin kinase II activity and the interaction of the SARS-CoV-2 Spike protein with hACE2 at micromolar concentrations. Both compounds inhibit SARS-CoV-2 entry into host cells and 5h decreases SARS-CoV-2 replication and MPro enzyme activity in addition. In conclusion, we provide a proof-of-concept for the successful design of multi-target compounds based on the tryptamine scaffold. Optimization of these preliminary hit compounds could potentially provide drug candidates to treat COVID-19 and other coronavirus diseases.


Subject(s)
COVID-19 , Humans , SARS-CoV-2 , COVID-19 Drug Treatment , Calmodulin , Receptors, Melatonin
10.
Nat Metab ; 5(10): 1673-1684, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37709961

ABSTRACT

The glucagon-like peptide 1 receptor (GLP1R) is a major drug target with several agonists being prescribed in individuals with type 2 diabetes and obesity1,2. The impact of genetic variability of GLP1R on receptor function and its association with metabolic traits are unclear with conflicting reports. Here, we show an unexpected diversity of phenotypes ranging from defective cell surface expression to complete or pathway-specific gain of function (GoF) and loss of function (LoF), after performing a functional profiling of 60 GLP1R variants across four signalling pathways. The defective insulin secretion of GLP1R LoF variants is rescued by allosteric GLP1R ligands or high concentrations of exendin-4/semaglutide in INS-1 823/3 cells. Genetic association studies in 200,000 participants from the UK Biobank show that impaired GLP1R cell surface expression contributes to poor glucose control and increased adiposity with increased glycated haemoglobin A1c and body mass index. This study defines impaired GLP1R cell surface expression as a risk factor for traits associated with type 2 diabetes and obesity and provides potential treatment options for GLP1R LoF variant carriers.


Subject(s)
Blood Glucose , Diabetes Mellitus, Type 2 , Humans , Insulin/metabolism , Diabetes Mellitus, Type 2/genetics , Adiposity/genetics , Obesity/genetics
11.
Med Sci (Paris) ; 28(10): 864-9, 2012 Oct.
Article in French | MEDLINE | ID: mdl-23067418

ABSTRACT

G protein-coupled receptors (GPCR), also called seven transmembrane domain (7TM) proteins, represent the largest family of membrane receptors with approximately 900 members in humans. Although a substantial number of 7TM proteins have been matched with endogenous ligands, for many of them no ligand has been identified raising questions about their function. Ligand-independent functions have been proposed for several of these so-called orphan 7TM proteins such as the modulation of the function of 7TM proteins with identified ligand through the formation of heteromeric complexes. Interestingly, viruses are using a similar strategy to hijack the host cell signaling machinery and to promote virus replication and dissemination. Indeed, to affect host cell function, several viruses encode orphan 7TM proteins that heteromerize either with other virally-encoded or with host-encoded 7TM proteins with identified ligands. This highlights the strategic importance of 7TM protein signaling and heteromerization for the regulation of cellular homeostasis.


Subject(s)
Host-Pathogen Interactions/physiology , Protein Multimerization/physiology , Receptors, G-Protein-Coupled/metabolism , Viral Proteins/metabolism , Virus Physiological Phenomena , Humans , Immune Evasion/physiology , Membrane Proteins/chemistry , Membrane Proteins/metabolism , Models, Biological , Receptors, Chemokine/metabolism , Receptors, Chemokine/physiology , Viral Proteins/chemistry
12.
Methods Mol Biol ; 2550: 141-149, 2022.
Article in English | MEDLINE | ID: mdl-36180687

ABSTRACT

The radioligand binding assay is a powerful method to study the interaction of a ligand with its target. This technique allows not only to determine different pharmacological key parameters such as the affinity and the association and dissociation constants but also to estimate the amount of target expressed in recombinant or endogenous cells or tissues. The current detailed protocols describe the different binding assays (saturation, kinetic, and competition) that can be performed on melatonin receptors using their most commonly used and validated radioligands 2-[125I]-iodomelatonin (2-[125I]-MLT) and [3H]-melatonin ([3H]-MLT).


Subject(s)
Melatonin , Binding Sites , Binding, Competitive , Iodine Radioisotopes , Kinetics , Ligands , Melatonin/metabolism , Receptors, Cell Surface/metabolism , Receptors, Melatonin
13.
ACS Pharmacol Transl Sci ; 5(8): 668-678, 2022 Aug 12.
Article in English | MEDLINE | ID: mdl-35983281

ABSTRACT

The two human melatonin receptors MT1 and MT2, which belong to the G protein-coupled receptor (GPCR) family, are important drug targets with approved indications for circadian rhythm- and sleep-related disorders and major depression. Currently, most of the pharmacological studies were performed using [3H]melatonin and 2-[125I]iodomelatonin (2-[125I]-MLT) radioligands. Recently, NanoLuc-based bioluminescence resonance energy transfer (NanoBRET) monitoring competitive binding between fluorescent tracers and unmodified test compounds has emerged as a sensitive, nonradioactive alternative for quantifying GPCR ligand engagement on the surface of living cells in equilibrium and real time. However, developing such assays for the two melatonin receptors depends on the availability of fluorescent tracers, which has been challenging predominantly owing to their narrow ligand entry channel and small ligand binding pocket. Here, we generated a set of melatonergic fluorescent tracers and used NanoBRET to evaluate their engagement with MT1 and MT2 receptors that are genetically fused to an N-terminal luminogenic HiBiT-peptide. We identified several nonselective and subtype-selective tracers. Among the selective tracers, PBI-8238 exhibited high nanomolar affinity to MT1, and PBI-8192 exhibited low nanomolar affinity to MT2. The pharmacological profiles of both tracers were in good agreement with those obtained with the current standard 2-[125I]-MLT radioligand. Molecular docking and mutagenesis studies suggested the binding mode of PBI-8192 in MT2 and its selectivity over MT1. In conclusion, we describe the development of the first nonradioactive, real-time binding assays for melatonin receptors expressed at the cell surface of living cells that are likely to accelerate drug discovery for melatonin receptors.

14.
Handb Clin Neurol ; 179: 345-356, 2021.
Article in English | MEDLINE | ID: mdl-34225974

ABSTRACT

In mammals, including humans, the neurohormone melatonin is mainly secreted from the pineal gland at night and acts on two high-affinity G protein-coupled receptors, the melatonin MT1 and MT2 receptors. Major functions of melatonin receptors in the brain are the regulation of circadian rhythms and sleep. Correspondingly, the main indications of the currently available drugs for these receptors indicate this as targets. Yet these drugs may not only improve circadian rhythm- and sleep-related disorders but may also be beneficial for complex diseases like major depression, Alzheimer's disease, autism, and attention-deficit/hyperactivity disorders. Here, we will focus on the hypothalamic functions of melatonin receptors by updating our knowledge on their hypothalamic expression pattern at normal, aged, and disease states, by discussing their capacity to regulate circadian rhythms and sleep and by presenting the clinical applications of the melatonin receptor-targeting drugs ramelteon, tasimelteon, and agomelatine or of prolonged-release melatonin formulations. Finally, we speculate about future trends in the field of melatonin receptor drugs.


Subject(s)
Depressive Disorder, Major , Melatonin , Aged , Animals , Brain/metabolism , Circadian Rhythm , Humans , Melatonin/therapeutic use , Receptor, Melatonin, MT1/metabolism
15.
Therapie ; 65(5): 415-22, 2010.
Article in French | MEDLINE | ID: mdl-21144476

ABSTRACT

The central effects of histamine are mediated by H(1), H(2) and H(3) receptors. The H(3) receptor inhibits histamine release in brain. Therefore, H(3) receptor inverse agonists, by suppressing this brake, enhance histamine neuron activity. The histaminergic system plays a major role in cognition and H(3) receptor inverse agonists are expected to be a potential therapeutics for cognitive deficits of Alzheimer's disease (AD). They are eagerly awaited inasmuch as other treatments of the disease, such as tacrine or memantine, also enhance, through different mechanisms, histaminergic neurotransmission. An important loss of histaminergic neurons has been observed in AD. In contrast, levels of the histamine metabolite in the CSF of AD patients show that their global activity is decreased by only 25%. This indicates that activating histamine neurons in AD can be envisaged.


Subject(s)
Alzheimer Disease/drug therapy , Histamine/metabolism , Receptors, Histamine H3/drug effects , Alzheimer Disease/physiopathology , Animals , Cognition Disorders/drug therapy , Cognition Disorders/etiology , Cognition Disorders/physiopathology , Drug Delivery Systems , Drug Inverse Agonism , Histamine Agonists/pharmacology , Humans , Neurons/metabolism , Receptors, Histamine H3/metabolism
16.
Trends Pharmacol Sci ; 28(7): 350-7, 2007 Jul.
Article in English | MEDLINE | ID: mdl-17573125

ABSTRACT

Constitutive activity has been mainly recorded for numerous overexpressed and/or mutated receptors. The histamine H(3) receptor (H(3)R) is a target of choice to study the physiological relevance of this process. In rodent brain, postsynaptic H(3)Rs show high constitutive activity, and presynaptic H(3) autoreceptors that show constitutive activity have a predominant role in inhibiting the activity of histamine neurons. H(3)R inverse agonists abrogate this constitutive brake and enhance histamine release in vivo. Some of these inverse agonists have entered clinical trials for the treatment of cognitive and food intake disorders. Studies performed in vitro and in vivo with proxyfan show that this H(3)R ligand is a 'protean agonist' - that is, a ligand with a spectrum of activity ranging from full agonism to full inverse agonism depending on the level of H(3)R constitutive activity. Consistent with its physiological and therapeutic relevance, the constitutive activity of H(3)R thus has a major function in the brain and regulates the activity of H(3)R-targeted drugs.


Subject(s)
Receptors, Histamine H3/metabolism , Animals , Brain/metabolism , Histamine Agonists/pharmacology , Histamine Antagonists/pharmacology , Humans
17.
Biochem Pharmacol ; 73(8): 1172-81, 2007 Apr 15.
Article in English | MEDLINE | ID: mdl-17306767

ABSTRACT

The interactions in the rat striatum between H(3) receptors (H(3)Rs) and D(2) receptors (D(2)Rs) were investigated with the [(35)S]GTPgamma[S] binding assay. The H(3)R agonist (R)alpha-methylhistamine increased [(35)S]GTPgamma[S] binding to striatal membranes with an EC(50)=14+/-5 nM and a maximal effect of +19+/-1%. This effect was inhibited by the H(3)R antagonist ciproxifan with a K(i)=1.0+/-0.3 nM. The D(2)R agonist quinpirole increased [(35)S]GTPgamma[S] binding to the same membranes with an EC(50)=1.5+/-0.5 microM and a maximal effect of +28+/-2%. Its effect was blocked by haloperidol with a K(i)=0.3+/-0.1 nM. The maximal effects of the H(3)R and D(2)R agonists were additive (+46+/-3%). However, D(2)R ligands did not modify the effects of H(3)R ligands and vice versa. Ciproxifan behaved as an H(3)R inverse agonist and decreased [(35)S]GTPgamma[S] binding. Haloperidol had no effect and did not change the inverse agonist effect of ciproxifan. Administrations for 10 days of ciproxifan (1.5mg/kg/day) or haloperidol (0.5mg/kg/day) did not change the effects of quinpirole and (R)alpha-methylhistamine, respectively. These data suggest that striatal H(3)Rs and D(2)Rs do not interact through their coupling to G-proteins. However, a hyperactivity of histaminergic and dopaminergic neurons being observed in schizophrenia, the additive activations of H(3)Rs and D(2)Rs suggest that they cooperate to generate some schizophrenic symptoms. Such a postsynaptic mechanism may underlie the antipsychotic-like effects of H(3)R inverse agonists and supports their therapeutic interest, alone or as adjunctive treatment with neuroleptics.


Subject(s)
Corpus Striatum/metabolism , Guanosine 5'-O-(3-Thiotriphosphate)/metabolism , Receptors, Dopamine D2/metabolism , Receptors, Histamine H3/metabolism , Animals , Corpus Striatum/drug effects , Drug Interactions , Haloperidol/pharmacology , Imidazoles/pharmacology , Male , Rats , Rats, Wistar , Receptors, Dopamine D2/physiology , Receptors, Histamine H3/physiology , Sulfur Radioisotopes
18.
Br J Pharmacol ; 174(14): 2409-2421, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28493341

ABSTRACT

BACKGROUND AND PURPOSE: The paradigm that GPCRs are able to prolong or initiate cellular signalling through intracellular receptors recently emerged. Melatonin binds to G protein-coupled MT1 and MT2 receptors. In contrast to most other hormones targeting GPCRs, melatonin and its synthetic analogues are amphiphilic molecules easily penetrating into cells, but the existence of intracellular receptors is still unclear mainly due to a lack of appropriate tools. EXPERIMENTAL APPROACH: We therefore designed and synthesized a series of hydrophilic melatonin receptor ligands coupled to the Cy3 cyanin fluorophore to reliably monitor its inability to penetrate cells. Two compounds, one lipophilic and one hydrophilic, were then functionally characterized in terms of their affinity for human and murine melatonin receptors expressed in HEK293 cells and their signalling efficacy. KEY RESULTS: Among the different ligands, ICOA-13 showed the desired properties as it was cell-impermeant and bound to human and mouse MT1 and MT2 receptors. ICOA-13 showed differential activities on melatonin receptors ranging from partial to full agonistic properties for the Gi /cAMP and ERK pathway and ß-arrestin 2 recruitment. Notably, ICOA-13 enabled us to discriminate between Gi /cAMP signalling of the MT1 receptor initiated at the cell surface and neuronal mitochondria. CONCLUSIONS AND IMPLICATIONS: We report here the first cell-impermeant melatonin receptor agonist, ICOA-13, which allows us to discriminate between signalling events initiated at the cell surface and intracellular compartments. Detection of mitochondrial MT1 receptors may have an important impact on the development of novel melatonin receptor ligands relevant for neurodegenerative diseases, such as Huntington disease.


Subject(s)
Drug Design , Ethylamines/chemical synthesis , Ethylamines/pharmacology , Indoles/chemical synthesis , Indoles/pharmacology , Ligands , Pyrroles/chemical synthesis , Pyrroles/pharmacology , Receptors, Melatonin/agonists , Animals , Carbocyanines/analysis , Carbocyanines/chemistry , Cell Membrane Permeability , Cells, Cultured , Dose-Response Relationship, Drug , Ethylamines/chemistry , HEK293 Cells , Humans , Indoles/chemistry , Mice , Molecular Structure , Pyrroles/chemistry , Receptors, Melatonin/metabolism , Structure-Activity Relationship
19.
Br J Pharmacol ; 147(7): 744-54, 2006 Apr.
Article in English | MEDLINE | ID: mdl-16432504

ABSTRACT

Various histamine derivatives were investigated at the human H3 receptor (H3R) and H4 receptor (H4R) stably expressed in human embryonic kidney (HEK)-293 cells using [125I]iodoproxyfan and [3H]histamine binding, respectively. In Tris buffer, [3H]histamine binding to membranes of HEK(hH4R) cells was monophasic (K(D) of 3.8+/-0.8 nM). In phosphate buffer, the Hill coefficient was decreased (n(H) = 0.5+/-0.1) and a large fraction of the binding was converted into a low-affinity component (K(D) = 67+/-27 nM). The inhibition of [3H]histamine binding by two agonists, a protean agonist and five antagonists/inverse agonists confirms that the potency of many H3R ligands is retained or only slightly reduced at the H4R. Histamine derivatives substituted with methyl groups in alpha, beta or N(alpha) position of the side chain retained a nanomolar potency at the H3R, but their affinity was dramatically decreased at the H4R. With relative potencies to histamine of 282 and 0.13% at the H3R and H4R, respectively, (+/-)-alpha,beta-dimethylhistamine is a potent and selective H3R agonist. Chiral alpha-branched analogues exhibited a marked stereoselectivity at the H3R and H4R, the enantiomers with a configuration equivalent to L-histidine being preferred at both receptors. The methylsubstitution of the imidazole ring was also studied. The relative potency to histamine of 4-methylhistamine (4-MeHA) at the H4R (67%) was similar to that reported at H2 receptors but, owing to its high affinity at the H4R (Ki = 7.0+/-1.2 nM) and very low potency at H1- and H3-receptors, it can be considered as a potent and selective H4R agonist. On inhibition of forskolin-induced cAMP formation, all the compounds tested, including 4-MeHA, behaved as full agonists at both receptors. However, the maximal inhibition achieved at the H4R (approximately -30%) was much lower than at the H3R (approximately -80%). Thioperamide behaved as an inverse agonist at both receptors and increased cAMP formation with the same maximal effect (approximately +25%). In conclusion, although the pharmacological profiles of the human H3R and H4R overlap, the structure-activity relationships of histamine derivatives at both receptors strongly differ and lead to the identification of selective compounds.


Subject(s)
Histamine/analogs & derivatives , Histamine/pharmacology , Receptors, G-Protein-Coupled/drug effects , Receptors, Histamine H3/drug effects , Receptors, Histamine/drug effects , Binding, Competitive/drug effects , Colforsin/pharmacology , Cyclic AMP/metabolism , DNA, Complementary/biosynthesis , DNA, Complementary/genetics , Histamine/metabolism , Histamine H2 Antagonists/metabolism , Humans , Imidazoles/metabolism , In Vitro Techniques , Kidney/cytology , Kidney/drug effects , Kidney/metabolism , Receptors, Histamine H4 , Recombinant Proteins/metabolism , Structure-Activity Relationship , Transfection
20.
Sci Signal ; 6(296): ra89, 2013 Oct 08.
Article in English | MEDLINE | ID: mdl-24106342

ABSTRACT

The formation of G protein (heterotrimeric guanine nucleotide-binding protein)-coupled receptor (GPCR) heteromers enables signaling diversification and holds great promise for improved drug selectivity. Most studies of these oligomerization events have been conducted in heterologous expression systems, and in vivo validation is lacking in most cases, thus questioning the physiological significance of GPCR heteromerization. The melatonin receptors MT1 and MT2 exist as homomers and heteromers when expressed in cultured cells. We showed that melatonin MT1/MT2 heteromers mediated the effect of melatonin on the light sensitivity of rod photoreceptors in mice. This effect of melatonin involved activation of the heteromer-specific phospholipase C and protein kinase C (PLC/PKC) pathway and was abolished in MT1(-/-) or MT2(-/-) mice, as well as in mice overexpressing a nonfunctional MT2 mutant that interfered with the formation of functional MT1/MT2 heteromers in photoreceptor cells. Not only does this study establish an essential role of melatonin receptor heteromers in retinal function, it also provides in vivo support for the physiological importance of GPCR heteromerization. Thus, the MT1/MT2 heteromer complex may provide a specific pharmacological target to improve photoreceptor function.


Subject(s)
Eye Proteins/metabolism , Protein Multimerization/physiology , Receptor, Melatonin, MT1/metabolism , Receptor, Melatonin, MT2/metabolism , Retinal Rod Photoreceptor Cells/metabolism , Animals , Eye Proteins/genetics , Mice , Mice, Knockout , Mutation , Receptor, Melatonin, MT1/genetics , Receptor, Melatonin, MT2/genetics , Retinal Rod Photoreceptor Cells/cytology , Type C Phospholipases/genetics , Type C Phospholipases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL