Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Main subject
Language
Publication year range
1.
Int J Mol Sci ; 23(15)2022 Jul 26.
Article in English | MEDLINE | ID: mdl-35897781

ABSTRACT

Endotoxemia is mainly caused by a massive burst of inflammatory cytokines as a result of lipopolysaccharide (LPS) invasion. Chitooligosaccharides (COS) is expected to be a potential drug for relieving endotoxemia due to its anti-inflammatory properties. However, the structural parameters of COS are often ambiguous, and the effect of degree of acetylation (DA) of COS on its anti-inflammatory remains unknown. In this study, four COSs with different DAs (0%, 12%, 50% and 85%) and the same oligomers distribution were successfully obtained. Their structures were confirmed by 1H NMR and MS analysis. Then, the effect of DA on the anti-inflammatory activity and relieving endotoxemia potential of COS was researched. The results revealed that COS with a DA of 12% had better anti-inflammatory activity than COSs with other DAs, mainly in inhibiting LPS-induced inflammatory cytokines burst, down-regulating its mRNA expression and reducing phosphorylation of IκBα. Furthermore, this COS showed an obviously protective effect on endotoxemia mice, such as inhibiting the increase in inflammatory cytokines and transaminases, alleviating the injury of liver and intestinal tissue. This study explored the effect of DA on the anti-inflammatory activity of COS for the first time and lays the foundation for the development of COS as an anti-inflammatory drug against endotoxemia.


Subject(s)
Endotoxemia , Acetylation , Animals , Anti-Inflammatory Agents/adverse effects , Chitin/metabolism , Chitosan , Cytokines/metabolism , Endotoxemia/chemically induced , Lipopolysaccharides/pharmacology , Mice , Oligosaccharides
2.
Carbohydr Res ; : 109177, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38880715

ABSTRACT

Chitin oligosaccharides have garnered significant attention due to their biological activities, particularly their immunomodulatory properties. However, O-acetylation in chemically preparing chitin oligosaccharides seems inevitable and leads to some uncertainty on the bioactivity of chitin oligosaccharides. In this study, an O-acetyl-free chitin oligosaccharides and three different O-acetylated chitin oligosaccharides with degree of polymerization ranging from 2 to 6 were prepared using ammonia hydrolysis, and their structures and detailed components were further characterized with FTIR, NMR and MS. Subsequently, the effects of O-acetylation on the immunomodulatory activity of chitin oligosaccharides were investigated in vitro and in vivo. The results suggested that the chitin oligosaccharides with O-acetylation exhibited better inflammatory inhibition than pure chitin oligosaccharides, significantly reducing the expression of inflammatory factors, such as IL-6 and iNOS, in the LPS-induced RAW264.7 macrophage. The chitin oligosaccharides with a degree of O-acetylation of 93 % was found to effectively alleviate LPS-induced endotoxemia in mice, including serum inflammation indices reduction and damage repairment of the intestinal liver, and kidney tissues.

3.
Biology (Basel) ; 12(9)2023 Sep 14.
Article in English | MEDLINE | ID: mdl-37759638

ABSTRACT

Scallop visceral mass and mantle are aquatic byproducts and waste, but they have high contents of protein. In this study, scallop visceral mass and mantle were used as supplements in the diet of juvenile sea cucumber (A. japonicus) and their effects on the growth, fatty acid and amino acid compositions, the non-specific immune responses and the intestinal microflora of A. japonicus were investigated through a 40 d feeding experiment. The results showed that dietary supplementation of scallop visceral mass significantly accelerated the specific growth rate (SGR) of juvenile A. japonicus by 3 times within 20 days, and also raised the contents of ω-3 fatty acids including EPA and DHA and the ω-3/ω-6 ratio of the sea cucumber tissue, which is favorable to the health and commercial value of the sea cucumber. Furthermore, it was found that the supplementation of scallop visceral mass and mantle stimulated the expression of immune-related genes and enhanced the immune defense in A. japonicus. Scallop visceral mass and mantle supplementation also increased the microbial diversity and the abundance of beneficial microbes including Bifidobacteriaceae, Streptomycetaceae, Clostridiaceae and Rhizobiales in the gut of A. japonicus. This study reveals the beneficial effects of dietary supplementation of scallop visceral mass and mantle on the growth of juvenile A. japonicus, which might be a promising way to reutilize this scallop waste and raise its economic value.

SELECTION OF CITATIONS
SEARCH DETAIL