Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 38
Filter
1.
J Bacteriol ; 206(6): e0044423, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38506530

ABSTRACT

Cellular life relies on enzymes that require metals, which must be acquired from extracellular sources. Bacteria utilize surface and secreted proteins to acquire such valuable nutrients from their environment. These include the cargo proteins of the type eleven secretion system (T11SS), which have been connected to host specificity, metal homeostasis, and nutritional immunity evasion. This Sec-dependent, Gram-negative secretion system is encoded by organisms throughout the phylum Proteobacteria, including human pathogens Neisseria meningitidis, Proteus mirabilis, Acinetobacter baumannii, and Haemophilus influenzae. Experimentally verified T11SS-dependent cargo include transferrin-binding protein B (TbpB), the hemophilin homologs heme receptor protein C (HrpC), hemophilin A (HphA), the immune evasion protein factor-H binding protein (fHbp), and the host symbiosis factor nematode intestinal localization protein C (NilC). Here, we examined the specificity of T11SS systems for their cognate cargo proteins using taxonomically distributed homolog pairs of T11SS and hemophilin cargo and explored the ligand binding ability of those hemophilin cargo homologs. In vivo expression in Escherichia coli of hemophilin homologs revealed that each is secreted in a specific manner by its cognate T11SS protein. Sequence analysis and structural modeling suggest that all hemophilin homologs share an N-terminal ligand-binding domain with the same topology as the ligand-binding domains of the Haemophilus haemolyticus heme binding protein (Hpl) and HphA. We term this signature feature of this group of proteins the hemophilin ligand-binding domain. Network analysis of hemophilin homologs revealed five subclusters and representatives from four of these showed variable heme-binding activities, which, combined with sequence-structure variation, suggests that hemophilins are diversifying in function.IMPORTANCEThe secreted protein hemophilin and its homologs contribute to the survival of several bacterial symbionts within their respective host environments. Here, we compared taxonomically diverse hemophilin homologs and their paired Type 11 secretion systems (T11SS) to determine if heme binding and T11SS secretion are conserved characteristics of this family. We establish the existence of divergent hemophilin sub-families and describe structural features that contribute to distinct ligand-binding behaviors. Furthermore, we demonstrate that T11SS are specific for their cognate hemophilin family cargo proteins. Our work establishes that hemophilin homolog-T11SS pairs are diverging from each other, potentially evolving into novel ligand acquisition systems that provide competitive benefits in host niches.


Subject(s)
Bacterial Proteins , Heme , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/chemistry , Heme/metabolism , Heme-Binding Proteins/metabolism , Hemeproteins/metabolism , Hemeproteins/genetics , Hemeproteins/chemistry , Protein Binding , Proteobacteria/metabolism , Proteobacteria/genetics
2.
Mol Microbiol ; 113(2): 381-398, 2020 02.
Article in English | MEDLINE | ID: mdl-31742788

ABSTRACT

Commensal bacteria serve as an important line of defense against colonisation by opportunisitic pathogens, but the underlying molecular mechanisms remain poorly explored. Here, we show that strains of a commensal bacterium, Haemophilus haemolyticus, make hemophilin, a heme-binding protein that inhibits growth of the opportunistic pathogen, non-typeable Haemophilus influenzae (NTHi) in culture. We purified the NTHi-inhibitory protein from H. haemolyticus and identified the hemophilin gene using proteomics and a gene knockout. An x-ray crystal structure of recombinant hemophilin shows that the protein does not belong to any of the known heme-binding protein folds, suggesting that it evolved independently. Biochemical characterisation shows that heme can be captured in the ferrous or ferric state, and with a variety of small heme-ligands bound, suggesting that hemophilin could function under a range of physiological conditions. Hemophilin knockout bacteria show a limited capacity to utilise free heme for growth. Our data suggest that hemophilin is a hemophore and that inhibition of NTHi occurs by heme starvation, raising the possibility that competition from hemophilin-producing H. haemolyticus could antagonise NTHi colonisation in the respiratory tract.


Subject(s)
Haemophilus influenzae/drug effects , Haemophilus/metabolism , Heme-Binding Proteins , Bacterial Proteins/chemistry , Bacterial Proteins/isolation & purification , Bacterial Proteins/pharmacology , Haemophilus Infections/microbiology , Haemophilus Infections/prevention & control , Haemophilus influenzae/growth & development , Heme/metabolism , Heme-Binding Proteins/chemistry , Heme-Binding Proteins/isolation & purification , Heme-Binding Proteins/pharmacology , Humans
3.
J Biol Chem ; 293(18): 6942-6957, 2018 05 04.
Article in English | MEDLINE | ID: mdl-29540481

ABSTRACT

Staphylococcus aureus is a leading cause of life-threatening infections in the United States. It actively acquires the essential nutrient iron from human hemoglobin (Hb) using the iron-regulated surface-determinant (Isd) system. This process is initiated when the closely related bacterial IsdB and IsdH receptors bind to Hb and extract its hemin through a conserved tri-domain unit that contains two NEAr iron Transporter (NEAT) domains that are connected by a helical linker domain. Previously, we demonstrated that the tri-domain unit within IsdH (IsdHN2N3) triggers hemin release by distorting Hb's F-helix. Here, we report that IsdHN2N3 promotes hemin release from both the α- and ß-subunits. Using a receptor mutant that only binds to the α-subunit of Hb and a stopped-flow transfer assay, we determined the energetics and micro-rate constants of hemin extraction from tetrameric Hb. We found that at 37 °C, the receptor accelerates hemin release from Hb up to 13,400-fold, with an activation enthalpy of 19.5 ± 1.1 kcal/mol. We propose that hemin removal requires the rate-limiting hydrolytic cleavage of the axial HisF8 Nϵ-Fe3+ bond, which, based on molecular dynamics simulations, may be facilitated by receptor-induced bond hydration. Isothermal titration calorimetry experiments revealed that two distinct IsdHN2N3·Hb protein·protein interfaces promote hemin release. A high-affinity receptor·Hb(A-helix) interface contributed ∼95% of the total binding standard free energy, enabling much weaker receptor interactions with Hb's F-helix that distort its hemin pocket and cause unfavorable changes in the binding enthalpy. We present a model indicating that receptor-introduced structural distortions and increased solvation underlie the IsdH-mediated hemin extraction mechanism.


Subject(s)
Energy Metabolism , Hemin/isolation & purification , Hemoglobins/chemistry , Staphylococcus aureus/metabolism , Antigens, Bacterial/metabolism , Binding Sites , Biopolymers/chemistry , Biopolymers/metabolism , Calorimetry , Cation Transport Proteins/metabolism , Hemin/metabolism , Hemoglobins/metabolism , Humans , Hydrolysis , Kinetics , Molecular Dynamics Simulation , Nuclear Magnetic Resonance, Biomolecular , Protein Binding , Protein Conformation , Receptors, Cell Surface/metabolism , Thermodynamics
4.
Blood Cells Mol Dis ; 70: 13-42, 2018 05.
Article in English | MEDLINE | ID: mdl-29126700

ABSTRACT

Haemoglobin (Hb) is widely known as the iron-containing protein in blood that is essential for O2 transport in mammals. Less widely recognised is that erythrocyte Hb belongs to a large family of Hb proteins with members distributed across all three domains of life-bacteria, archaea and eukaryotes. This review, aimed chiefly at researchers new to the field, attempts a broad overview of the diversity, and common features, in Hb structure and function. Topics include structural and functional classification of Hbs; principles of O2 binding affinity and selectivity between O2/NO/CO and other small ligands; hexacoordinate (containing bis-imidazole coordinated haem) Hbs; bacterial truncated Hbs; flavohaemoglobins; enzymatic reactions of Hbs with bioactive gases, particularly NO, and protection from nitrosative stress; and, sensor Hbs. A final section sketches the evolution of work on the structural basis for allosteric O2 binding by mammalian RBC Hb, including the development of newer kinetic models. Where possible, reference to historical works is included, in order to provide context for current advances in Hb research.


Subject(s)
Hemoglobins/chemistry , Hemoglobins/metabolism , Animals , Binding Sites , Erythrocytes/metabolism , Evolution, Molecular , Heme/chemistry , Heme/metabolism , Hemoglobins/genetics , Humans , Hydrogen Bonding , Ligands , Oxidative Stress , Oxygen/metabolism , Protein Conformation , Structure-Activity Relationship
6.
J Biol Chem ; 289(10): 6728-6738, 2014 Mar 07.
Article in English | MEDLINE | ID: mdl-24425866

ABSTRACT

Staphylococcus aureus causes life-threatening disease in humans. The S. aureus surface protein iron-regulated surface determinant H (IsdH) binds to mammalian hemoglobin (Hb) and extracts heme as a source of iron, which is an essential nutrient for the bacteria. However, the process of heme transfer from Hb is poorly understood. We have determined the structure of IsdH bound to human Hb by x-ray crystallography at 4.2 Å resolution, revealing the structural basis for heme transfer. One IsdH molecule is bound to each α and ß Hb subunit, suggesting that the receptor acquires iron from both chains by a similar mechanism. Remarkably, two near iron transporter (NEAT) domains in IsdH perform very different functions. An N-terminal NEAT domain binds α/ß globin through a site distant from the globin heme pocket and, via an intervening structural domain, positions the C-terminal heme-binding NEAT domain perfectly for heme transfer. These data, together with a 2.3 Å resolution crystal structure of the isolated N-terminal domain bound to Hb and small-angle x-ray scattering of free IsdH, reveal how multiple domains of IsdH cooperate to strip heme from Hb. Many bacterial pathogens obtain iron from human hemoglobin using proteins that contain multiple NEAT domains and other domains whose functions are poorly understood. Our results suggest that, rather than acting as isolated units, NEAT domains may be integrated into higher order architectures that employ multiple interaction interfaces to efficiently extract heme from host proteins.


Subject(s)
Antigens, Bacterial/chemistry , Heme/chemistry , Hemoglobins/chemistry , Iron/metabolism , Receptors, Cell Surface/chemistry , Staphylococcal Infections/metabolism , Staphylococcus aureus/metabolism , Crystallography, X-Ray , Humans , Protein Structure, Secondary , Protein Structure, Tertiary , Staphylococcal Infections/blood
7.
Acta Crystallogr D Biol Crystallogr ; 71(Pt 6): 1295-306, 2015 Jun.
Article in English | MEDLINE | ID: mdl-26057669

ABSTRACT

Staphylococcus aureus is a common and serious cause of infection in humans. The bacterium expresses a cell-surface receptor that binds to, and strips haem from, human haemoglobin (Hb). The binding interface has previously been identified; however, the structural changes that promote haem release from haemoglobin were unknown. Here, the structure of the receptor-Hb complex is reported at 2.6 Å resolution, which reveals a conformational change in the α-globin F helix that disrupts the haem-pocket structure and alters the Hb quaternary interactions. These features suggest potential mechanisms by which the S. aureus Hb receptor induces haem release from Hb.


Subject(s)
Antigens, Bacterial/chemistry , Hemoglobins/chemistry , Receptors, Cell Surface/chemistry , Staphylococcus aureus/chemistry , alpha-Globins/chemistry , Models, Molecular , Protein Conformation
8.
J Infect Dis ; 209(11): 1764-72, 2014 Jun 01.
Article in English | MEDLINE | ID: mdl-24338348

ABSTRACT

Staphylococcus aureus is a Gram-positive pathogen responsible for tremendous morbidity and mortality. As with most bacteria, S. aureus requires iron to cause disease, and it can acquire iron from host hemoglobin. The current model for staphylococcal hemoglobin-iron acquisition proposes that S. aureus binds hemoglobin through the surface-exposed hemoglobin receptor IsdB. IsdB removes heme from bound hemoglobin and transfers this cofactor to other proteins of the Isd system, which import and degrade heme to release iron in the cytoplasm. Here we demonstrate that the individual components of the Isd system are required for growth on low nanomolar concentrations of hemoglobin as a sole source of iron. An in-depth study of hemoglobin binding by IsdB revealed key residues that are required for hemoglobin binding. Further, we show that these residues are necessary for heme extraction from hemoglobin and growth on hemoglobin as a sole iron source. These processes are found to contribute to the pathogenicity of S. aureus in a murine model of infection. Together these results build on the model for Isd-mediated hemoglobin binding and heme-iron acquisition during the pathogenesis of S. aureus infection.


Subject(s)
Cation Transport Proteins/metabolism , Heme/metabolism , Hemoglobins/metabolism , Protein Binding/physiology , Staphylococcus aureus/metabolism , Cation Transport Proteins/genetics , Gene Expression Regulation, Bacterial/physiology , Genetic Variation , Genome, Bacterial , Humans , Staphylococcus aureus/pathogenicity , Virulence
9.
J Biol Chem ; 288(2): 1065-78, 2013 Jan 11.
Article in English | MEDLINE | ID: mdl-23132864

ABSTRACT

Staphylococcus aureus is a leading cause of life-threatening infections in the United States. It requires iron to grow, which must be actively procured from its host to successfully mount an infection. Heme-iron within hemoglobin (Hb) is the most abundant source of iron in the human body and is captured by S. aureus using two closely related receptors, IsdH and IsdB. Here we demonstrate that each receptor captures heme using two conserved near iron transporter (NEAT) domains that function synergistically. NMR studies of the 39-kDa conserved unit from IsdH (IsdH(N2N3), Ala(326)-Asp(660)) reveals that it adopts an elongated dumbbell-shaped structure in which its NEAT domains are properly positioned by a helical linker domain, whose three-dimensional structure is determined here in detail. Electrospray ionization mass spectrometry and heme transfer measurements indicate that IsdH(N2N3) extracts heme from Hb via an ordered process in which the receptor promotes heme release by inducing steric strain that dissociates the Hb tetramer. Other clinically significant Gram-positive pathogens capture Hb using receptors that contain multiple NEAT domains, suggesting that they use a conserved mechanism.


Subject(s)
Antigens, Bacterial/metabolism , Cation Transport Proteins/metabolism , Heme/metabolism , Hemoglobins/metabolism , Receptors, Cell Surface/metabolism , Staphylococcus aureus/metabolism , Cloning, Molecular , Humans , Nuclear Magnetic Resonance, Biomolecular , Proteolysis
10.
J Biol Chem ; 288(27): 19986-20001, 2013 Jul 05.
Article in English | MEDLINE | ID: mdl-23696640

ABSTRACT

α-Hemoglobin (αHb)-stabilizing protein (AHSP) is a molecular chaperone that assists hemoglobin assembly. AHSP induces changes in αHb heme coordination, but how these changes are facilitated by interactions at the αHb·AHSP interface is not well understood. To address this question we have used NMR, x-ray absorption spectroscopy, and ligand binding measurements to probe αHb conformational changes induced by AHSP binding. NMR chemical shift analyses of free CO-αHb and CO-αHb·AHSP indicated that the seven helical elements of the native αHb structure are retained and that the heme Fe(II) remains coordinated to the proximal His-87 side chain. However, chemical shift differences revealed alterations of the F, G, and H helices and the heme pocket of CO-αHb bound to AHSP. Comparisons of iron-ligand geometry using extended x-ray absorption fine structure spectroscopy showed that AHSP binding induces a small 0.03 Å lengthening of the Fe-O2 bond, explaining previous reports that AHSP decreases αHb O2 affinity roughly 4-fold and promotes autooxidation due primarily to a 3-4-fold increase in the rate of O2 dissociation. Pro-30 mutations diminished NMR chemical shift changes in the proximal heme pocket, restored normal O2 dissociation rate and equilibrium constants, and reduced O2-αHb autooxidation rates. Thus, the contacts mediated by Pro-30 in wild-type AHSP promote αHb autooxidation by introducing strain into the proximal heme pocket. As a chaperone, AHSP facilitates rapid assembly of αHb into Hb when ßHb is abundant but diverts αHb to a redox resistant holding state when ßHb is limiting.


Subject(s)
Blood Proteins/chemistry , Hemoglobin A/chemistry , Iron/chemistry , Molecular Chaperones/chemistry , Oxygen/chemistry , Oxyhemoglobins/chemistry , Binding Sites , Blood Proteins/metabolism , Hemoglobin A/metabolism , Humans , Iron/metabolism , Molecular Chaperones/metabolism , Nuclear Magnetic Resonance, Biomolecular , Oxidation-Reduction , Oxygen/metabolism , Oxyhemoglobins/metabolism , Protein Structure, Secondary
11.
ACS Chem Neurosci ; 15(2): 346-356, 2024 01 17.
Article in English | MEDLINE | ID: mdl-38149631

ABSTRACT

Aptamers are functional oligonucleotide ligands used for the molecular recognition of various targets. The natural characteristics of aptamers make them an excellent alternative to antibodies in diagnostics, therapeutics, and biosensing. DNA aptamers are mainly single-stranded oligonucleotides (ssDNA) that possess a definite binding to targets. However, the application of aptamers to the fields of brain health and neurodegenerative diseases has been limited to date. Herein, a DNA aptamer against the brain-derived neurotrophic factor (BDNF) protein was obtained by in vitro selection. BDNF is a potential biomarker of brain health and neurodegenerative diseases and has functions in the synaptic plasticity and survival of neurons. We identified eight aptamers that have binding affinity for BDNF from a 50-nucleotide library. Among these aptamers, NV_B12 showed the highest sensitivity and selectivity for detecting BDNF. In an aptamer-linked immobilized sorbent assay (ALISA), the NV_B12 aptamer strongly bound to BDNF protein, in a dose-dependent manner. The dissociation constant (Kd) for NV_B12 was 0.5 nM (95% CI: 0.4-0.6 nM). These findings suggest that BDNF-specific aptamers could be used as an alternative to antibodies in diagnostic and detection assays for BDNF.


Subject(s)
Aptamers, Nucleotide , Neurodegenerative Diseases , Humans , Aptamers, Nucleotide/pharmacology , Aptamers, Nucleotide/chemistry , Brain-Derived Neurotrophic Factor/genetics , DNA, Single-Stranded , Gene Library
12.
Biochemistry ; 52(11): 1950-62, 2013 Mar 19.
Article in English | MEDLINE | ID: mdl-23425245

ABSTRACT

Troponin C (TnC) is the calcium-binding subunit of the troponin complex responsible for initiating striated muscle contraction in response to calcium influx. In the skeletal TnC isoform, calcium binding induces a structural change in the regulatory N-domain of TnC that involves a transition from a closed to open structural state and accompanying exposure of a large hydrophobic patch for troponin I (TnI) to subsequently bind. However, little is understood about how calcium primes the N-domain of the cardiac isoform (cTnC) for interaction with the TnI subunit as the open conformation of the regulatory domain of cTnC has been observed only in the presence of bound TnI. Here we use paramagnetic relaxation enhancement (PRE) to characterize the closed to open transition of isolated cTnC in solution, a process that cannot be observed by traditional nuclear magnetic resonance methods. Our PRE data from four spin-labeled monocysteine constructs of isolated cTnC reveal that calcium binding triggers movement of the N-domain helices toward an open state. Fitting of the PRE data to a closed to open transition model reveals the presence of a small population of cTnC molecules in the absence of calcium that possess an open conformation, the level of which increases substantially upon Ca(2+) binding. These data support a model in which calcium binding creates a dynamic equilibrium between the closed and open structural states to prime cTnC for interaction with its target peptide. We also used PRE data to assess the structural effects of a familial hypertrophic cardiomyopathy point mutation located within the N-domain of cTnC (A8V). The PRE data show that the Ca(2+) switch mechanism is perturbed by the A8V mutation, resulting in a more open N-domain conformation in both the apo and holo states.


Subject(s)
Cardiomyopathy, Hypertrophic/genetics , Point Mutation , Troponin C/genetics , Troponin C/metabolism , Animals , Calcium/metabolism , Cardiomyopathy, Hypertrophic/metabolism , Chickens , Humans , Models, Molecular , Protein Structure, Tertiary , Rats , Troponin C/chemistry
13.
J Biol Chem ; 287(14): 11325-37, 2012 Mar 30.
Article in English | MEDLINE | ID: mdl-22287545

ABSTRACT

α-Hemoglobin stabilizing protein (AHSP) is believed to facilitate adult Hemoglobin A assembly and protect against toxic free α-globin subunits. Recombinant AHSP binds multiple forms of free α-globin to stabilize their structures and inhibit precipitation. However, AHSP also stimulates autooxidation of αO(2) subunit and its rapid conversion to a partially unfolded bishistidyl hemichrome structure. To investigate these biochemical properties, we altered the evolutionarily conserved AHSP proline 30 in recombinantly expressed proteins and introduced identical mutations into the endogenous murine Ahsp gene. In vitro, the P30W AHSP variant bound oxygenated α chains with 30-fold increased affinity. Both P30W and P30A mutant proteins also caused decreased rates of αO(2) autooxidation as compared with wild-type AHSP. Despite these abnormalities, mice harboring P30A or P30W Ahsp mutations exhibited no detectable defects in erythropoiesis at steady state or during induced stresses. Further biochemical studies revealed that the AHSP P30A and P30W substitutions had minimal effects on AHSP interactions with ferric α subunits. Together, our findings indicate that the ability of AHSP to stabilize nascent α chain folding intermediates prior to hemin reduction and incorporation into adult Hemoglobin A is physiologically more important than AHSP interactions with ferrous αO(2) subunits.


Subject(s)
Hemoglobin A/chemistry , Molecular Chaperones/metabolism , Mutagenesis , Mutant Proteins/metabolism , Protein Multimerization , Amino Acid Sequence , Amino Acid Substitution , Animals , Erythropoiesis , Gene Knock-In Techniques , Hemin/metabolism , Hemoglobin A/metabolism , Humans , Methemoglobin/chemistry , Methemoglobin/metabolism , Mice , Models, Molecular , Molecular Chaperones/chemistry , Molecular Chaperones/genetics , Molecular Sequence Data , Mutant Proteins/chemistry , Mutant Proteins/genetics , Mutation , Oxidation-Reduction , Protein Conformation , Protein Multimerization/genetics , beta-Thalassemia/genetics
14.
J Biol Chem ; 286(44): 38439-38447, 2011 Nov 04.
Article in English | MEDLINE | ID: mdl-21917915

ABSTRACT

Pathogens must steal iron from their hosts to establish infection. In mammals, hemoglobin (Hb) represents the largest reservoir of iron, and pathogens express Hb-binding proteins to access this source. Here, we show how one of the commonest and most significant human pathogens, Staphylococcus aureus, captures Hb as the first step of an iron-scavenging pathway. The x-ray crystal structure of Hb bound to a domain from the Isd (iron-regulated surface determinant) protein, IsdH, is the first structure of a Hb capture complex to be determined. Surface mutations in Hb that reduce binding to the Hb-receptor limit the capacity of S. aureus to utilize Hb as an iron source, suggesting that Hb sequence is a factor in host susceptibility to infection. The demonstration that pathogens make highly specific recognition complexes with Hb raises the possibility of developing inhibitors of Hb binding as antibacterial agents.


Subject(s)
Antigens, Bacterial/chemistry , Hemoglobins/chemistry , Receptors, Cell Surface/chemistry , Staphylococcal Infections/microbiology , Staphylococcus aureus/metabolism , Antigens, Bacterial/metabolism , Bacterial Proteins/chemistry , Crystallography, X-Ray/methods , Humans , Iron/chemistry , Ligands , Light , Molecular Conformation , Protein Binding , Protein Structure, Secondary , Protein Structure, Tertiary , Receptors, Cell Surface/metabolism , Spectrophotometry, Ultraviolet/methods , Staphylococcal Infections/metabolism
15.
Adv Exp Med Biol ; 747: 19-41, 2012.
Article in English | MEDLINE | ID: mdl-22949109

ABSTRACT

There are many different techniques available to biologists and biochemists that can be used to detect and characterize the self-association of proteins. Each technique has strengths and weaknesses and it is often useful to combine several approaches to maximize the former and minimize the latter. Here we review a range of methodologies that identify protein self-association and/or allow the stoichiometry and affinity of the interaction to be determined, placing an emphasis on what type of information can be obtained and outlining the advantages and disadvantages involved. In general, in vitro biophysical techniques, such as size exclusion chromatography, analytical ultracentrifugation, scattering techniques, NMR spectroscopy, isothermal titration calorimetry, fluorescence anisotropy and mass spectrometry, provide information on stoichiometry and/or binding affinities. Other approaches such as cross-linking, fluorescence methods (e.g., fluorescence correlation spectroscopy, FCS; Förster resonance energy transfer, FRET; fluorescence recovery after photobleaching, FRAP; and proximity imaging, PRIM) and complementation approaches (e.g., yeast two hybrid assays and bimolecular fluorescence complementation, BiFC) can be used to detect protein self-association in a cellular context.


Subject(s)
Protein Multimerization , Protein Subunits/chemistry , Proteins/chemistry , Calorimetry , Chromatography, Gel , Fluorescence Resonance Energy Transfer , Light , Mass Spectrometry , Molecular Imaging , Nuclear Magnetic Resonance, Biomolecular , Protein Subunits/metabolism , Proteins/metabolism , Scattering, Small Angle , Spectrometry, Fluorescence , Ultracentrifugation
16.
Nature ; 435(7042): 697-701, 2005 Jun 02.
Article in English | MEDLINE | ID: mdl-15931225

ABSTRACT

The synthesis of haemoglobin A (HbA) is exquisitely coordinated during erythrocyte development to prevent damaging effects from individual alpha- and beta-subunits. The alpha-haemoglobin-stabilizing protein (AHSP) binds alpha-haemoglobin (alphaHb), inhibits the ability of alphaHb to generate reactive oxygen species and prevents its precipitation on exposure to oxidant stress. The structure of AHSP bound to ferrous alphaHb is thought to represent a transitional complex through which alphaHb is converted to a non-reactive, hexacoordinate ferric form. Here we report the crystal structure of this ferric alphaHb-AHSP complex at 2.4 A resolution. Our findings reveal a striking bis-histidyl configuration in which both the proximal and the distal histidines coordinate the haem iron atom. To attain this unusual conformation, segments of alphaHb undergo drastic structural rearrangements, including the repositioning of several alpha-helices. Moreover, conversion to the ferric bis-histidine configuration strongly and specifically inhibits redox chemistry catalysis and haem loss from alphaHb. The observed structural changes, which impair the chemical reactivity of haem iron, explain how AHSP stabilizes alphaHb and prevents its damaging effects in cells.


Subject(s)
Blood Proteins/chemistry , Blood Proteins/metabolism , Heme/metabolism , Hemoglobin A/chemistry , Hemoglobin A/metabolism , Oxyhemoglobins/chemistry , Oxyhemoglobins/metabolism , Crystallography, X-Ray , Models, Molecular , Molecular Chaperones/chemistry , Molecular Chaperones/metabolism , Oxidation-Reduction , Protein Binding , Protein Conformation , Reactive Oxygen Species/metabolism
17.
Biochem J ; 432(2): 275-82, 2010 Dec 01.
Article in English | MEDLINE | ID: mdl-20860551

ABSTRACT

To produce functional Hb (haemoglobin), nascent α-globin (αo) and ß-globin (ßo) chains must each bind a single haem molecule (to form αh and ßh) and interact together to form heterodimers. The precise sequence of binding events is unknown, and it has been suggested that additional factors might enhance the efficiency of Hb folding. AHSP (α-haemoglobin-stabilizing protein) has been shown previously to bind αh and regulate redox activity of the haem iron. In the present study, we used a combination of classical and dynamic light scattering and NMR spectroscopy to demonstrate that AHSP forms a heterodimeric complex with αo that inhibits αo aggregation and promotes αo folding in the absence of haem. These findings indicate that AHSP may function as an αo-specific chaperone, and suggest an important role for αo in guiding Hb assembly by stabilizing ßo and inhibiting off-pathway self-association of ßh.


Subject(s)
Apoproteins/chemistry , Blood Proteins/metabolism , Hemoglobins/chemistry , Molecular Chaperones/metabolism , Peptide Fragments/chemistry , Circular Dichroism , Dimerization , Drug Stability , Hemoglobin A/chemistry , Hemoglobin A/metabolism , Humans , Models, Molecular , Protein Denaturation , Protein Folding , Protein Structure, Tertiary , Protein Subunits/chemistry , Scattering, Radiation , Solubility , Thermodynamics
18.
Pathogens ; 10(1)2021 Jan 01.
Article in English | MEDLINE | ID: mdl-33401487

ABSTRACT

Nontypeable Haemophilus influenzae (NTHi) is a significant respiratory tract pathogen responsible for infections that collectively pose a substantial health and socioeconomic burden. The clinical course of these infections is largely dictated by NTHi interactions with host respiratory epithelia, and thus, approaches that disrupt colonisation and invasion may have significant therapeutic potential. Survival, successful host-cell interactions, and pathogenesis are reliant on NTHi's ability to sequester host-derived haem. Previously, we demonstrated the therapeutic potential of exploiting this haem-dependence using a closely related competitor bacterium, Haemophilus haemolyticus (Hh). Hh strains capable of producing the novel haem-binding protein haemophilin (Hpl) possessed potent inhibitory activity by restricting NTHi access to haem in a broth co-culture environment. Here, we extend this work to cell culture models that more closely represent the human respiratory epithelium and show that Hh strains with high levels of hpl expression protect epithelial cell line monolayers against adhesion and invasion by NTHi. Inhibitory activity was dependent on the level of Hpl production, which was stimulated by NTHi challenge and nasopharyngeal cell exposure. Provided these protective benefits translate to in vivo applications, Hpl-producing Hh may have probiotic utility against NTHi infections by inhibiting requisite nasopharyngeal colonisation.

19.
Pathogens ; 10(5)2021 May 10.
Article in English | MEDLINE | ID: mdl-34068621

ABSTRACT

Nontypeable Haemophilus influenzae (NTHi) is a major respiratory pathogen that initiates infection by colonising the upper airways. Strategies that interfere with this interaction may therefore have a clinically significant impact on the ability of NTHi to cause disease. We have previously shown that strains of the commensal bacterium Haemophilus haemolyticus (Hh) that produce a novel haem-binding protein, haemophilin, can prevent NTHi growth and interactions with host cells in vitro. We hypothesized that natural pharyngeal carriage of Hh strains with the hpl open reading frame (Hh-hpl+) would be associated with a lower prevalence and/or density of NTHi colonisation in healthy individuals. Oropharyngeal swabs were collected from 257 healthy adults in Australia between 2018 and 2019. Real-time PCR was used to quantitatively compare the oropharyngeal carriage load of NTHi and Hh populations with the Hh-hpl+ or Hh-hpl- genotype. The likelihood of acquiring/maintaining NTHi colonisation status over a two- to six-month period was assessed in individuals that carried either Hh-hpl- (n = 25) or Hh-hpl+ (n = 25). Compared to carriage of Hh-hpl- strains, adult (18-65 years) and elderly (>65 years) participants that were colonised with Hh-hpl+ were 2.43 or 2.67 times less likely to carry NTHi in their oropharynx, respectively. Colonisation with high densities of Hh-hpl+ correlated with a low NTHi carriage load and a 2.63 times lower likelihood of acquiring/maintaining NTHi colonisation status between visits. Together with supporting in vitro studies, these results encourage further investigation into the potential use of Hh-hpl+ as a respiratory probiotic candidate for the prevention of NTHi infection.

20.
J Biol Chem ; 284(43): 29462-9, 2009 Oct 23.
Article in English | MEDLINE | ID: mdl-19706593

ABSTRACT

alpha-Hemoglobin (alphaHb) stabilizing protein (AHSP) is expressed in erythropoietic tissues as an accessory factor in hemoglobin synthesis. AHSP forms a specific complex with alphaHb and suppresses the heme-catalyzed evolution of reactive oxygen species by converting alphaHb to a conformation in which the heme is coordinated at both axial positions by histidine side chains (bis-histidyl coordination). Currently, the detailed mechanism by which AHSP induces structural changes in alphaHb has not been determined. Here, we present x-ray crystallography, NMR spectroscopy, and mutagenesis data that identify, for the first time, the importance of an evolutionarily conserved proline, Pro(30), in loop 1 of AHSP. Mutation of Pro(30) to a variety of residue types results in reduced ability to convert alphaHb. In complex with alphaHb, AHSP Pro(30) adopts a cis-peptidyl conformation and makes contact with the N terminus of helix G in alphaHb. Mutations that stabilize the cis-peptidyl conformation of free AHSP, also enhance the alphaHb conversion activity. These findings suggest that AHSP loop 1 can transmit structural changes to the heme pocket of alphaHb, and, more generally, highlight the importance of cis-peptidyl prolyl residues in defining the conformation of regulatory protein loops.


Subject(s)
Blood Proteins/chemistry , Hemoglobin A/chemistry , Molecular Chaperones/chemistry , Blood Proteins/genetics , Blood Proteins/metabolism , Crystallography, X-Ray , Hemoglobin A/genetics , Hemoglobin A/metabolism , Humans , Molecular Chaperones/genetics , Molecular Chaperones/metabolism , Mutation , Nuclear Magnetic Resonance, Biomolecular , Proline/chemistry , Proline/genetics , Proline/metabolism , Protein Stability , Protein Structure, Quaternary/physiology , Protein Structure, Secondary/physiology , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL