Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
1.
J Neurosci ; 44(25)2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38769008

ABSTRACT

Rapid eye movement (REM) sleep, also referred to as paradoxical sleep for the striking resemblance of its electroencephalogram (EEG) to the one observed in wakefulness, is characterized by the occurrence of transient events such as limb twitches or facial and rapid eye movements. Here, we investigated the local activity of the primary somatosensory or barrel cortex (S1) in naturally sleeping head-fixed male mice during REM. Through local field potential recordings, we uncovered local appearances of spindle waves in the barrel cortex during REM concomitant with strong delta power, challenging the view of a wakefulness-like activity in REM. We further performed extra- and intracellular recordings of thalamic cells in head-fixed mice. Our data show high-frequency thalamic bursts of spikes and subthreshold spindle oscillations in approximately half of the neurons of the ventral posterior medial nucleus which further confirmed the thalamic origin of local cortical spindles in S1 in REM. Cortical spindle oscillations were suppressed, while thalamus spike firing increased, associated with rapid mouse whisker movements and S1 cortical activity transitioned to an activated state. During REM, the sensory thalamus and barrel cortex therefore alternate between high (wake-like) and low (non-REM sleep-like) activation states, potentially providing a neuronal substrate for mnemonic processes occurring during this paradoxical sleep stage.


Subject(s)
Electroencephalography , Sleep, REM , Somatosensory Cortex , Thalamus , Animals , Mice , Sleep, REM/physiology , Somatosensory Cortex/physiology , Male , Thalamus/physiology , Mice, Inbred C57BL , Vibrissae/physiology , Vibrissae/innervation , Wakefulness/physiology , Neural Pathways/physiology
2.
Cereb Cortex ; 33(13): 8286-8299, 2023 06 20.
Article in English | MEDLINE | ID: mdl-37032620

ABSTRACT

Neocortical interneurons provide inhibition responsible for organizing neuronal activity into brain oscillations that subserve cognitive functions such as memory, attention, or prediction. However, the interneuronal contribution to the entrainment of neocortical oscillations within and across different cortical layers was not described. Here, using layer-specific optogenetic stimulations with micro-Light-Emitting Diode arrays, directed toward parvalbumin-expressing (PV) interneurons in non-anesthetized awake mice, we found that supragranular layer stimulations of PV neurons were most efficient at entraining supragranular local field potential (LFP) oscillations at gamma frequencies (γ: 25-80 Hz), whereas infragranular layer stimulation of PV neurons better entrained the LFP at delta (δ: 2-5 Hz) and theta (θ: 6-10 Hz) frequencies. At the level of neuronal action potential activity, we observed that supragranular neurons better followed the imposed PV stimulation rhythm than their infragranular counterparts at most frequencies when the stimulation was delivered in their respective layer. Moreover, the neuronal entrainment evoked by local stimulation could propagate across layers, though with a lesser impact when the stimulation occurs in deep layers, suggesting a direction-specific laminar propagation. These results establish a layer-based framework for oscillations to entrain the primary somatosensory cortex in awake conditions.


Subject(s)
Interneurons , Parvalbumins , Mice , Animals , Parvalbumins/metabolism , Interneurons/physiology , Neurons/physiology , Brain/metabolism , Action Potentials/physiology
3.
J Neurosci ; 2022 May 12.
Article in English | MEDLINE | ID: mdl-35552234

ABSTRACT

GABAergic inhibitory neurons, through their molecular, anatomic and physiological diversity, provide a substrate for the modulation of ongoing cortical circuit activity throughout the sleep-wake cycle. Here, we investigated neuronal activity dynamics of parvalbumin (PV), vasoactive intestinal polypeptide (VIP) and somatostatin (SST) neurons in naturally-sleeping head-restrained mice at the level of layer 2/3 of the primary somatosensory barrel cortex of mice. Through calcium-imaging and targeted single-unit loose-patch or whole-cell recordings, we found that PV action potential (AP) firing activity was largest during both NREM (non-rapid eye movement) and REM sleep stages, that VIP neurons were most active during REM sleep and that the overall activity of SST neurons remained stable throughout the sleep/wake cycle. Analysis of neuronal activity dynamics uncovered rapid decreases in PV cell firing at wake onset followed by a progressive recovery during wake. Simultaneous local field potential (LFP) recordings further revealed that, except for SST neurons, a large proportion of neurons were modulated by ongoing delta and theta oscillations. During NREM sleep spindles, PV and SST activity increased and decreased, respectively. Finally, we uncovered the presence of whisking behavior in mice during REM sleep and show that the activity of VIP and SST is differentially modulated during awake and sleeping whisking bouts, which may provide a neuronal substrate for internal brain representations occurring during sleep.SIGNIFICANCE STATEMENTIn the sensory cortex, the balance between excitation and inhibition is believed to be highly dynamic throughout the sleep/wake cycle, shaping the response of cortical circuits to external stimuli, while allowing the formation of newly encoded memory. Using in vivo two-photon calcium imaging or targeted single-unit recordings combined with local field potential recordings, we describe the vigilance state and whisking-behavior -dependent activity of excitatory pyramidal and inhibitory GABAergic neurons in the supragranular layers of mouse somatosensory cortex. Interneuronal activity was found to be differentially modulated by ongoing delta and theta waves, sleep spindles and a novel type of whisking observed during Rapid Eye Movement (REM sleep), potentially providing a neuronal substrate for internal brain representations occurring during sleep.

4.
PLoS Biol ; 14(2): e1002383, 2016 02.
Article in English | MEDLINE | ID: mdl-26890123

ABSTRACT

Cortical gamma activity (30-80 Hz) is believed to play important functions in neural computation and arises from the interplay of parvalbumin-expressing interneurons (PV) and pyramidal cells (PYRs). However, the subthreshold dynamics underlying its emergence in the cortex of awake animals remain unclear. Here, we characterized the intracellular dynamics of PVs and PYRs during spontaneous and visually evoked gamma activity in layers 2/3 of V1 of awake mice using targeted patch-clamp recordings and synchronous local field potentials (LFPs). Strong gamma activity patterned in short bouts (one to three cycles), occurred when PVs and PYRs were depolarizing and entrained their membrane potential dynamics regardless of the presence of visual stimulation. PV firing phase locked unconditionally to gamma activity. However, PYRs only phase locked to visually evoked gamma bouts. Taken together, our results indicate that gamma activity corresponds to short pulses of correlated background synaptic activity synchronizing the output of cortical neurons depending on external sensory drive.


Subject(s)
Gamma Rhythm , Membrane Potentials , Pyramidal Cells/metabolism , Visual Cortex/metabolism , Animals , Interneurons/metabolism , Mice, Transgenic , Parvalbumins/metabolism
5.
Biomed Microdevices ; 19(3): 49, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28560702

ABSTRACT

This article reports on the development, i.e., the design, fabrication, and validation of an implantable optical neural probes designed for in vivo experiments relying on optogenetics. The probes comprise an array of ten bare light-emitting diode (LED) chips emitting at a wavelength of 460 nm and integrated along a flexible polyimide-based substrate stiffened using a micromachined ladder-like silicon structure. The resulting mechanical stiffness of the slender, 250-µm-wide, 65-µm-thick, and 5- and 8-mm-long probe shank facilitates its implantation into neural tissue. The LEDs are encapsulated by a fluropolymer coating protecting the implant against the physiological conditions in the brain. The electrical interface to the external control unit is provided by 10-µm-thick, highly flexible polyimide cables making the probes suitable for both acute and chronic in vivo experiments. Optical and electrical properties of the probes are reported, as well as their in vivo validation in acute optogenetic studies in transgenic mice. The depth-dependent optical stimulation of both excitatory and inhibitory neurons is demonstrated by altering the brain activity in the cortex and the thalamus. Local network responses elicited by 20-ms-long light pulses of different optical power (20 µW and 1 mW), as well as local modulation of single unit neuronal activity to 1-s-long light pulses with low optical intensity (17 µW) are presented. The ability to modulate neural activity makes these devices suitable for a broad variety of optogenetic experiments.


Subject(s)
Brain/metabolism , Optical Fibers , Optogenetics/instrumentation , Semiconductors , Animals , Brain/physiology , Electrophysiological Phenomena , Mice , Optical Phenomena , Silicon
6.
iScience ; 27(3): 109205, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38482496

ABSTRACT

The orbitofrontal cortex, one of the key neocortical areas in valuation and emotion, is critical for cognitive flexibility but its role in the consolidation of recently acquired information remains unclear. Here, we demonstrate orbitofrontal offline replay in the context of a place-reward association task on a maze with varying goal locations. When switches in place-reward coupling were applied, replay was enhanced relative to sessions with stable contingencies. Moreover, replay strength was positively correlated with the subsequent overnight change in behavioral performance. Interrogating relationships between orbitofrontal and hippocampal activity, we found that orbitofrontal and hippocampal replay could occur independently but became coordinated during a type of cortical state with strong spiking activity. These findings reveal a structured form of offline orbitofrontal ensemble activity that is correlated with cognitive flexibility required to adapt to changing task contingencies, and becomes associated with hippocampal replay only during a specific state of high cortical excitability.

7.
Neuron ; 56(5): 907-23, 2007 Dec 06.
Article in English | MEDLINE | ID: mdl-18054865

ABSTRACT

Tactile information is actively acquired and processed in the brain through concerted interactions between movement and sensation. Somatosensory input is often the result of self-generated movement during the active touch of objects, and conversely, sensory information is used to refine motor control. There must therefore be important interactions between sensory and motor pathways, which we chose to investigate in the mouse whisker sensorimotor system. Voltage-sensitive dye was applied to the neocortex of mice to directly image the membrane potential dynamics of sensorimotor cortex with subcolumnar spatial resolution and millisecond temporal precision. Single brief whisker deflections evoked highly distributed depolarizing cortical sensory responses, which began in the primary somatosensory barrel cortex and subsequently excited the whisker motor cortex. The spread of sensory information to motor cortex was dynamically regulated by behavior and correlated with the generation of sensory-evoked whisker movement. Sensory processing in motor cortex may therefore contribute significantly to active tactile sensory perception.


Subject(s)
Behavior, Animal/physiology , Motor Cortex/physiology , Somatosensory Cortex/physiology , Touch/physiology , Animals , Behavior, Animal/drug effects , Fluorescent Dyes , Genetic Vectors , Lentivirus/genetics , Membrane Potentials/physiology , Mice , Motor Cortex/anatomy & histology , Motor Cortex/cytology , Physical Stimulation , Reflex, Monosynaptic/physiology , Somatosensory Cortex/anatomy & histology , Somatosensory Cortex/cytology , Synapses/physiology , Vibrissae/innervation , Vibrissae/physiology
8.
IEEE Trans Biomed Eng ; 67(9): 2603-2615, 2020 09.
Article in English | MEDLINE | ID: mdl-31940517

ABSTRACT

This paper reports on the development, characterization and in vivo validation of compact optical neural probes. These novel intracerebral devices comprise micro light-emitting diodes ( µLEDs) integrated along their slender probe shanks with up to 20 µLEDs per device. Blue light with a peak wavelength of 455 nm is emitted from circular apertures 100 µm in diameter. The µLEDs are structured on GaN-on-sapphire wafers and subsequently transferred onto silicon (Si) carrier wafers. The wafer-scale transfer process provides the opportunity to process the functional GaN layer stack from both sides and hence enables maximizing the efficiency of the µLEDs. Combined with standard MEMS fabrication processes for Si, linear µLED arrays with small inter- µLED distances are achieved on thin probe shanks with cross-sections measuring [Formula: see text]. Devices are interconnected using highly flexible polyimide cables in order to mechanically decouple them from the peripheral electronics during in vivo experiments. Assembled probes emit a peak optical radiant flux of 440 µW (emittance 56 mW mm -2) at 5 mA driving current. Thermal characterization of test probes reveals a temperature increase of 1.5 K measured using an integrated thermistor. Electrical functionality stress tests have been carried out to evaluate the device passivation against the physiological environment. It is estimated to endure at least 48 h during continuously pulsed µLED operation. A compact driving circuitry enables low-noise µLED operation in in vivo optogenetic experiments. The radiant flux necessary to elicit an acceptable neuronal response is determined between 1.36 µW and 17.5 µW. Probe validation successfully demonstrates the layer-specific stimulation in the cortex in multiple in vivo trials.


Subject(s)
Optogenetics , Silicon , Electricity , Light , Neurons
9.
Cell Rep ; 26(6): 1443-1457.e5, 2019 02 05.
Article in English | MEDLINE | ID: mdl-30726730

ABSTRACT

The thalamus plays a central role in sleep rhythms in the mammalian brain and, yet, surprisingly little is known about its function and interaction with local cortical oscillations during NREM sleep (NREM). We investigated the neuronal correlates of cortical barrel activity in the two corresponding thalamic nuclei, the ventral posterior medial (VPM), and the posterior medial (Pom) nuclei during natural NREM in mice. Our data reveal (1) distinct modulations of VPM and Pom activity throughout NREM episodes, (2) a thalamic nucleus-specific phase-locking to cortical slow and spindle waves, (3) cell-specific subthreshold spindle oscillations in VPM neurons that only partially overlap with cortical spindles, and (4) that spindle features evolve throughout NREM episodes and vary according to the post-NREM state. Taken together, our results suggest that, during natural sleep, the barrel cortex exerts a leading role in the generation and transfer of slow rhythms to the somatosensory thalamus and reciprocally for spindle oscillations.


Subject(s)
Action Potentials , Neurons/physiology , Sleep , Somatosensory Cortex/physiology , Thalamus/physiology , Animals , Male , Mice , Mice, Inbred C57BL , Somatosensory Cortex/cytology , Thalamus/cytology
10.
J Neurosci ; 27(8): 1892-901, 2007 Feb 21.
Article in English | MEDLINE | ID: mdl-17314285

ABSTRACT

Dopamine is released from both axonal and somatodendritic sites of midbrain dopaminergic neurons in an action potential-dependent manner. In contrast to the majority of central neurons, the axon of dopaminergic neurons typically originates from a dendritic site, suggesting a specialized computational function. Here, we examine the initiation and spread of action potentials in dopaminergic neurons of the substantia nigra pars reticulata and reveal that the displacement of the axon to a dendritic site allows highly compartmentalized electrical signaling. In response to a train of synaptic input, action potentials initiated at axon-bearing dendritic sites formed a variable trigger for invasion to the soma and contralateral dendritic tree, with action potentials often confined to the axon-bearing dendrite. The application of dopamine increased this form of electrical compartmentalization, an effect mediated by a tonic membrane potential hyperpolarization leading to an increased availability of a class of voltage-dependent potassium channel. These data suggest that the release of dopamine from axonal and somatodendritic sites are dissociable, and that dopamine levels within the midbrain are dynamically controlled by the somatodendritic spread of action potentials.


Subject(s)
Dopamine/physiology , Neurons/physiology , Substantia Nigra/physiology , Action Potentials/drug effects , Action Potentials/physiology , Animals , Axons/physiology , Dendrites/physiology , Dopamine/pharmacology , Electrophysiology , In Vitro Techniques , Ion Channel Gating/physiology , Membrane Potentials/physiology , Potassium Channels, Voltage-Gated/metabolism , Rats , Rats, Wistar , Synapses/physiology
11.
Cell Rep ; 13(4): 647-656, 2015 Oct 27.
Article in English | MEDLINE | ID: mdl-26489463

ABSTRACT

The thalamus transmits sensory information to the neocortex and receives neocortical, subcortical, and neuromodulatory inputs. Despite its obvious importance, surprisingly little is known about thalamic function in awake animals. Here, using intracellular and extracellular recordings in awake head-restrained mice, we investigate membrane potential dynamics and action potential firing in the two major thalamic nuclei related to whisker sensation, the ventral posterior medial nucleus (VPM) and the posterior medial group (Pom), which receive distinct inputs from brainstem and neocortex. We find heterogeneous state-dependent dynamics in both nuclei, with an overall increase in action potential firing during active states. Whisking increased putative lemniscal and corticothalamic excitatory inputs onto VPM and Pom neurons, respectively. A subpopulation of VPM cells fired spikes phase-locked to the whisking cycle during free whisking, and these cells may therefore signal whisker position. Our results suggest differential processing of whisking comparing thalamic nuclei at both sub- and supra-threshold levels.


Subject(s)
Membrane Potentials/physiology , Thalamus/physiology , Vibrissae/physiology , Action Potentials/physiology , Animals , Electroencephalography , Electromyography , Male , Mice , Mice, Inbred C57BL , Neocortex/cytology , Neocortex/physiology , Neurons/cytology , Neurons/physiology , Thalamus/cytology
12.
Front Syst Neurosci ; 9: 187, 2015.
Article in English | MEDLINE | ID: mdl-26834582

ABSTRACT

Beta and gamma rhythms have been hypothesized to be involved in global and local coordination of neuronal activity, respectively. Here, we investigated how cells in rodent area S1BF are entrained by rhythmic fluctuations at various frequencies within the local area and in connected areas, and how this depends on behavioral state and cell type. We performed simultaneous extracellular field and unit recordings in four connected areas of the freely moving rat (S1BF, V1M, perirhinal cortex, CA1). S1BF spiking activity was strongly entrained by both beta and gamma S1BF oscillations, which were associated with deactivations and activations, respectively. We identified multiple classes of fast spiking and excitatory cells in S1BF, which showed prominent differences in rhythmic entrainment and in the extent to which phase locking was modulated by behavioral state. Using an additional dataset acquired by whole-cell recordings in head-fixed mice, these cell classes could be compared with identified phenotypes showing gamma rhythmicity in their membrane potential. We next examined how S1BF cells were entrained by rhythmic fluctuations in connected brain areas. Gamma-synchronization was detected in all four areas, however we did not detect significant gamma coherence among these areas. Instead, we only found long-range coherence in the theta-beta range among these areas. In contrast to local S1BF synchronization, we found long-range S1BF-spike to CA1-LFP synchronization to be homogeneous across inhibitory and excitatory cell types. These findings suggest distinct, cell-type contributions of low and high-frequency synchronization to intra- and inter-areal neuronal interactions.

13.
Neuropharmacology ; 45(1): 57-71, 2003 Jul.
Article in English | MEDLINE | ID: mdl-12814659

ABSTRACT

General anaesthetics exhibiting enantioselectivity afford valuable tools to assess the fundamental mechanisms underlying anaesthesia. Here, we characterised the actions of the R-(+)- and S-(-)-enantiomers of etomidate. In mice and tadpoles, R-(+)-etomidate was more potent (approximately 10-fold) than S-(-)-etomidate in producing loss of the righting reflex. In electrophysiological and radioligand binding assays, the enantiomers of etomidate positively regulated GABAA receptor function at anaesthetic concentrations and with an enantioselectivity paralleling their in vivo activity. GABA-evoked currents mediated by human recombinant GABAA receptors were potentiated by either R-(+)- or S-(-)-etomidate in a manner dependent upon receptor subunit composition. A direct, GABA-mimetic, effect was similarly subunit dependent. Modulation of GABA receptor activity was selective; R-(+)-etomidate inhibited nicotinic acetylcholine, or 5-hydroxytryptamine3 receptor subtypes only at supra-clinical concentrations and ionotropic glutamate receptor isoforms were essentially unaffected. Acting upon reticulothalamic neurones in rat brain slices, R-(+)-etomidate prolonged the duration of miniature IPSCs and modestly enhanced their peak amplitude. S-(-)-etomidate exerted qualitatively similar, but weaker, actions. In a model of locomotor activity, fictive swimming in Xenopus laevis tadpoles, R-(+)- but not S-(-)-etomidate exerted a depressant influence via enhancement of GABAergic neurotransmission. Collectively, these observations strongly implicate the GABAA receptor as a molecular target relevant to the anaesthetic action of etomidate.


Subject(s)
Anesthetics, Intravenous/pharmacology , Etomidate/pharmacology , Hypnotics and Sedatives/pharmacology , Reflex/drug effects , Animals , Bridged Bicyclo Compounds, Heterocyclic/pharmacology , Cell Line , Evoked Potentials/drug effects , Female , Humans , In Vitro Techniques , Larva , Male , Membrane Potentials/drug effects , Mice , Oocytes/drug effects , Oocytes/physiology , Radioligand Assay , Rats , Rats, Sprague-Dawley , Receptors, GABA-A/drug effects , Receptors, GABA-A/physiology , Stereoisomerism , Structure-Activity Relationship , Synaptic Transmission/drug effects , Thalamus/cytology , Thalamus/physiology , Xenopus laevis
14.
Article in English | MEDLINE | ID: mdl-22912602

ABSTRACT

Although the neocortex forms a distributed system comprised of several functional areas, its vertical columnar organization is largely conserved across areas and species, suggesting the existence of a canonical neocortical microcircuit. In order to elucidate the principles governing the organization of such a cortical diagram, a detailed understanding of the dynamics binding different types of cortical neurons into a coherent algorithm is essential. Within this complex circuitry, GABAergic interneurons, while forming approximately only 15-20% of all cortical neurons, appear critical in maintaining a dynamic balance between excitation and inhibition. Despite their importance, cortical GABAergic neurons have not been extensively studied in vivo and their precise role in shaping the local microcircuit sensory response still remains to be determined. Their paucity, combined with their molecular, anatomical, and physiological diversity, has made it difficult to even establish a consensual nomenclature. However, recent technological advances in microscopy and mouse genetics have fostered a renewed interest in neocortical interneurons by putting them within "visible" reach of experimenters. The anatomically well-defined whisker-to-barrel pathway of the rodent is particularly amenable to studies attempting to link cortical circuit dynamics to behavior. To each whisker corresponds a discrete cortical unit equivalent to a single column, specialized in the encoding and processing of the sensory information it receives. In this review, we will focus on the functional role that each subtype of supragranular GABAergic neuron embedded within such a single neocortical unit may play in shaping the dynamics of the local circuit during somatosensory integration.

15.
Nat Neurosci ; 15(4): 607-12, 2012 Feb 26.
Article in English | MEDLINE | ID: mdl-22366760

ABSTRACT

Neocortical GABAergic neurons have diverse molecular, structural and electrophysiological features, but the functional correlates of this diversity are largely unknown. We found unique membrane potential dynamics of somatostatin-expressing (SOM) neurons in layer 2/3 of the primary somatosensory barrel cortex of awake behaving mice. SOM neurons were spontaneously active during periods of quiet wakefulness. However, SOM neurons hyperpolarized and reduced action potential firing in response to both passive and active whisker sensing, in contrast with all other recorded types of nearby neurons, which were excited by sensory input. Optogenetic inhibition of SOM neurons increased burst firing in nearby excitatory neurons. We hypothesize that the spontaneous activity of SOM neurons during quiet wakefulness provides a tonic inhibition to the distal dendrites of excitatory pyramidal neurons. Conversely, the inhibition of SOM cells during active cortical processing likely enhances distal dendritic excitability, which may be important for top-down computations and sensorimotor integration.


Subject(s)
GABAergic Neurons/physiology , Gene Expression Regulation/physiology , Somatosensory Cortex/cytology , Somatosensory Cortex/metabolism , Somatostatin/biosynthesis , Vibrissae/metabolism , Action Potentials/physiology , Animals , Membrane Potentials/physiology , Mice , Mice, Inbred C57BL , Mice, Transgenic
16.
Curr Biol ; 21(19): 1593-602, 2011 Oct 11.
Article in English | MEDLINE | ID: mdl-21945274

ABSTRACT

BACKGROUND: Synaptic interactions between excitatory and inhibitory neocortical neurons are important for mammalian sensory perception. Synaptic transmission between identified neurons within neocortical microcircuits has mainly been studied in brain slice preparations in vitro. Here, we investigate brain-state-dependent neocortical synaptic interactions in vivo by combining the specificity of optogenetic stimulation with the precision of whole-cell recordings from postsynaptic excitatory glutamatergic neurons and GFP-labeled inhibitory GABAergic neurons targeted through two-photon microscopy. RESULTS: Channelrhodopsin-2 (ChR2) stimulation of excitatory layer 2/3 barrel cortex neurons evoked larger and faster depolarizing postsynaptic potentials and more synaptically driven action potentials in fast-spiking (FS) GABAergic neurons compared to both non-fast-spiking (NFS) GABAergic neurons and postsynaptic excitatory pyramidal neurons located within the same neocortical microcircuit. The number of action potentials evoked in ChR2-expressing neurons showed low trial-to-trial variability, but postsynaptic responses varied strongly with near-linear dependence upon spontaneously driven changes in prestimulus membrane potential. Postsynaptic responses in excitatory neurons had reversal potentials, which were hyperpolarized relative to action potential threshold and were therefore inhibitory. Reversal potentials measured in postsynaptic GABAergic neurons were close to action potential threshold. Postsynaptic inhibitory neurons preferentially fired synaptically driven action potentials from spontaneously depolarized network states, with stronger state-dependent modulation in NFS GABAergic neurons compared to FS GABAergic neurons. CONCLUSIONS: Inhibitory neurons appear to dominate neocortical microcircuit function, receiving stronger local excitatory synaptic input and firing more action potentials compared to excitatory neurons. In mouse layer 2/3 barrel cortex, we propose that strong state-dependent recruitment of inhibitory neurons drives competition among excitatory neurons enforcing sparse coding.


Subject(s)
Excitatory Postsynaptic Potentials , Neuronal Plasticity/physiology , Somatosensory Cortex/physiology , Synaptic Transmission , Action Potentials , Animals , Bacterial Proteins/genetics , Channelrhodopsins , Electric Stimulation/methods , GABAergic Neurons/physiology , Luminescent Proteins/genetics , Mice , Neuronal Plasticity/drug effects , Neuronal Plasticity/genetics , Patch-Clamp Techniques/methods , Pyramidal Cells/physiology
17.
Neuron ; 65(3): 422-35, 2010 Feb 11.
Article in English | MEDLINE | ID: mdl-20159454

ABSTRACT

Computations in cortical circuits are mediated by synaptic interactions between excitatory and inhibitory neurons, and yet we know little about their activity in awake animals. Here, through single and dual whole-cell recordings combined with two-photon microscopy in the barrel cortex of behaving mice, we directly compare the synaptically driven membrane potential dynamics of inhibitory and excitatory layer 2/3 neurons. We find that inhibitory neurons depolarize synchronously with excitatory neurons, but they are much more active with differential contributions of two classes of inhibitory neurons during different brain states. Fast-spiking GABAergic neurons dominate during quiet wakefulness, but during active wakefulness Non-fast-spiking GABAergic neurons depolarize, firing action potentials at increased rates. Sparse uncorrelated action potential firing in excitatory neurons is driven by fast, large, and cell-specific depolarization. In contrast, inhibitory neurons fire correlated action potentials at much higher frequencies driven by slower, smaller, and broadly synchronized depolarization.


Subject(s)
Interneurons/physiology , Membrane Potentials/physiology , Somatosensory Cortex/cytology , Wakefulness , gamma-Aminobutyric Acid/metabolism , Action Potentials/genetics , Animals , Glutamate Decarboxylase/genetics , Green Fluorescent Proteins/genetics , Membrane Potentials/genetics , Mice , Mice, Inbred C57BL , Mice, Transgenic , Models, Neurological , Movement/physiology , Neural Inhibition/physiology , Nonlinear Dynamics , Patch-Clamp Techniques/methods , Statistics as Topic , Vibrissae/innervation
18.
J Physiol ; 583(Pt 3): 1021-40, 2007 Sep 15.
Article in English | MEDLINE | ID: mdl-17656439

ABSTRACT

Analgesic neurosteroids such as 5alpha-pregnan-3alpha-ol-20-one (5alpha3alpha) are potent selective endogenous modulators of the GABA(A) receptor (GABA(A)R) while certain synthetic derivatives (i.e. minaxolone) additionally enhance the function of recombinant glycine receptors (GlyR). Inhibitory transmission within the superficial dorsal horn has been implicated in mediating the analgesic actions of neurosteroids. However, the relative contribution played by synaptic and extrasynaptic receptors is unknown. In this study, we have compared the actions of 5alpha3alpha and minaxolone upon inhibitory transmission mediated by both GABA(A) and strychnine-sensitive GlyRs in lamina II neurones of juvenile (P15-21) rats. At the near physiological temperature of 35 degrees C and at a holding potential of -60 mV we recorded three kinetically distinct populations of miniature IPSCs (mIPSCs): GlyR-mediated, GABA(A)R-mediated and mixed GABA(A)R-GlyR mIPSCs, arising from the corelease of both inhibitory neurotransmitters. In addition, sequential application of strychnine and bicuculline revealed a small (5.2 +/- 1.0 pA) GlyR- but not a GABA(A)R-mediated tonic conductance. 5alpha3alpha (1-10 microm) prolonged GABA(A)R and mixed mIPSCs in a concentration-dependent manner but was without effect upon GlyR mIPSCs. In contrast, minaxolone (1-10 microm) prolonged the decay of GlyR mIPSCs and, additionally, was approximately 10-fold more potent than 5alpha3alpha upon GABA(A)R mIPSCs. However, 5alpha3alpha and minaxolone (1 microm) evoked a similar bicuculline-sensitive inhibitory conductance, indicating that the extrasynaptic GABA(A)Rs do not discriminate between these two steroids. Furthermore, approximately 92% of the effect of 1 microm 5alpha3alpha upon GABAergic inhibition could be accounted for by its action upon the extrasynaptic conductance. These findings are relevant to modulation of inhibitory circuits within spinally mediated pain pathways and suggest that extrasynaptic GABA(A)Rs may represent a relevant molecular target for the analgesic actions of neurosteroids.


Subject(s)
Anesthetics/pharmacology , Desoxycorticosterone/analogs & derivatives , Posterior Horn Cells/drug effects , Pregnanolone/analogs & derivatives , Receptors, GABA-A/physiology , Receptors, Glycine/physiology , Animals , Bicuculline/pharmacology , Desoxycorticosterone/pharmacology , Female , GABA Antagonists/pharmacology , GABA Modulators/pharmacology , Glycine Agents/pharmacology , Inhibitory Postsynaptic Potentials/drug effects , Inhibitory Postsynaptic Potentials/physiology , Male , Membrane Potentials/drug effects , Membrane Potentials/physiology , Neural Inhibition/drug effects , Neural Inhibition/physiology , Posterior Horn Cells/physiology , Pregnanolone/pharmacology , Rats , Rats, Sprague-Dawley , Strychnine/pharmacology , Synaptic Transmission/drug effects , Synaptic Transmission/physiology
19.
J Physiol ; 546(Pt 3): 801-11, 2003 Feb 01.
Article in English | MEDLINE | ID: mdl-12563005

ABSTRACT

The thalamic reticular nucleus (nRT) is composed entirely of GABAergic inhibitory neurones that receive input from pyramidal cortical neurones and excitatory relay cells of the ventrobasal complex of the thalamus (VB). It plays a major role in the synchrony of thalamic networks, yet the synaptic connections it receives from VB cells have never been fully physiologically characterised. Here, whole-cell current-clamp recordings were obtained from 22 synaptically connected VB-nRT cell pairs in slices of juvenile (P14-20) rats. At 34-36 degrees C, single presynaptic APs evoked unitary EPSPs in nRT cells with a peak amplitude of 7.4 +/- 1.5 mV (mean +/- S.E.M.) and a decay time constant of 15.1 +/- 0.9 ms. Only four out of 22 pairs showed transmission failures at a mean rate of 6.8 +/- 1.1 %. An NMDA receptor (NMDAR)-mediated component was significant at rest and subsequent EPSPs in a train were depressed. Only one out of 14 pairs tested was reciprocally connected; the observed IPSPs in the VB cell had a peak amplitude of 0.8 mV and were completely abolished in the presence of 10 microM bicuculline. Thus, synaptic connections from VB cells to nRT neurones are mainly 'drivers', while a small subset of cells form closed disynaptic loops.


Subject(s)
Neurons/physiology , Synapses/physiology , Thalamic Nuclei/physiology , Thalamus/physiology , Animals , Electrophysiology , Excitatory Postsynaptic Potentials , In Vitro Techniques , Neural Pathways/physiology , Rats , Reaction Time , Thalamic Nuclei/cytology , Thalamus/cytology , Ventral Thalamic Nuclei/cytology , Ventral Thalamic Nuclei/physiology
20.
Eur J Neurosci ; 19(3): 625-33, 2004 Feb.
Article in English | MEDLINE | ID: mdl-14984412

ABSTRACT

Corticothalamic (CT) feedback projections to the thalamus outnumber sensory inputs from the periphery by orders of magnitude. However, their functional role remains elusive. CT projections may directly excite thalamic relay cells or indirectly inhibit them via excitation of the nucleus reticularis thalami (nRT), a nuclear formation composed entirely of gamma-aminobutyric acidergic neurons. The relative strengths of these two pathways will ultimately control the effects of CT projections on the output of thalamic relay cells. However, corticoreticular synapses have not yet been fully physiologically characterized. Here, local stimulation of layer VI cells by focal application of K+ or AMPA elicited excitatory postsynaptic potentials in nRT neurons with a mean peak amplitude of 2.4 +/- 0.1 mV (n = 75, mean +/- SEM), a mean rise time (10-90%) of 0.74 +/- 0.03 ms and a weighted decay time constant of 11 +/- 0.3 ms. A pharmacological profile of responses was drawn in both current-clamp and voltage-clamp modes, showing the presence of a small N-methyl-d-aspartate receptor-dependent component at depolarized potentials. In two pairs of synaptically coupled layer VI cell-nRT neuron, moderate rates of transmission failures were observed while the latencies were above 5 ms in both cases. Our results indicate that the corticoreticular pathway fulfills the criteria for 'modulatory' inputs and is temporally restricted. We suggest that it may be involved in coincidence detection of convergent corticoreticular signals.


Subject(s)
Cerebral Cortex/cytology , Neurons/physiology , Synapses/physiology , Thalamic Nuclei/cytology , Valine/analogs & derivatives , Animals , Animals, Newborn , Cerebral Cortex/physiology , Drug Interactions , Electric Stimulation , Excitatory Amino Acid Agonists/pharmacology , Excitatory Amino Acid Antagonists/pharmacology , Excitatory Postsynaptic Potentials/drug effects , Excitatory Postsynaptic Potentials/physiology , GABA Antagonists/pharmacology , In Vitro Techniques , Membrane Potentials/drug effects , Membrane Potentials/physiology , Neural Conduction/drug effects , Neural Inhibition/drug effects , Neural Inhibition/physiology , Neurons/drug effects , Patch-Clamp Techniques , Picrotoxin/pharmacology , Potassium/pharmacology , Quinoxalines/pharmacology , Rats , Rats, Wistar , Synapses/drug effects , Thalamic Nuclei/drug effects , Thalamic Nuclei/physiology , Valine/pharmacology , alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL