Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 41
Filter
1.
Immunity ; 55(9): 1710-1724.e8, 2022 09 13.
Article in English | MEDLINE | ID: mdl-35944529

ABSTRACT

Human metapneumovirus (hMPV) is a leading cause of acute lower respiratory tract infections in high-risk populations, yet there are no vaccines or anti-viral therapies approved for the prevention or treatment of hMPV-associated disease. Here, we used a high-throughput single-cell technology to interrogate memory B cell responses to the hMPV fusion (F) glycoprotein in young adult and elderly donors. Across all donors, the neutralizing antibody response was primarily directed to epitopes expressed on both pre- and post-fusion F conformations. However, we identified rare, highly potent broadly neutralizing antibodies that recognize pre-fusion-specific epitopes and structurally characterized an antibody that targets a site of vulnerability at the pre-fusion F trimer apex. Additionally, monotherapy with neutralizing antibodies targeting three distinct antigenic sites provided robust protection against lower respiratory tract infection in a small animal model. This study provides promising monoclonal antibody candidates for passive immunoprophylaxis and informs the rational design of hMPV vaccine immunogens.


Subject(s)
Antibodies, Neutralizing , Antibodies, Viral , Metapneumovirus , Respiratory Tract Infections , Aged , Animals , Epitopes , Glycoproteins , Humans , Viral Fusion Proteins , Young Adult
2.
BJOG ; 2024 Jul 31.
Article in English | MEDLINE | ID: mdl-39086037

ABSTRACT

The aim of this document is to provide guidance for the management of women and birthing people with a permanent pacemaker (PPM) or implantable cardioverter defibrillator (ICD). Cardiac devices are becoming more common in obstetric practice and a reference document for contemporary evidence-based practice is required. Where evidence is limited, expert consensus has established recommendations. The purpose is to improve safety and reduce the risk of adverse events relating to implanted cardiac devices during pregnancy, birth and the postnatal period.

3.
Cancer Immunol Immunother ; 71(2): 353-363, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34165607

ABSTRACT

CD47 is a widely expressed cell-surface protein that regulates phagocytosis mediated by cells of the innate immune system, such as macrophages and dendritic cells. CD47 serves as the ligand for a receptor on these innate immune cells, signal regulatory protein (SIRP)-α, which in turn inhibits phagocytosis. Several targeted CD47 therapeutic antibodies have been investigated clinically; however, how to improve its therapeutic efficacy remains unclear. Herein, we developed a CD47 blocking antibody, named IBI188, that could specifically block the CD47-SIRP-α axis, which transduces the "don't eat me" signal to macrophages. In vitro phagocytosis assays demonstrated the pro-phagocytosis ability of IBI188. Furthermore, several in vivo models were chosen to evaluate the anti-tumor efficacy of IBI188. IBI188 treatment upregulated cell movement- and inflammation-related genes in macrophages. Synergism was observed when combined with an anti-CD20 therapeutic antibody, whose function depends on antibody-dependent cellular cytotoxicity/phagocytosis (ADCC/ADCP). CD47 expression was evaluated following azacytidine (AZA) treatment, a standard-of-care for patients with multiple myeloma; enhanced anti-tumor efficacy was observed in the combination group in AML xenograft models. Notably, IBI188 treatment increased vascular endothelial growth factor-A (VEGF-A) levels in a solid tumor model, and combined treatment with an anti-VEGF-A antibody and IBI188 resulted in an enhanced anti-tumor effect. These data indicate that IBI188 is a therapeutic anti-CD47 antibody with anti-tumor potency, which can be enhanced when used in combination with standard-of-care drugs for cancer treatment.


Subject(s)
Antibodies, Monoclonal/pharmacology , CD47 Antigen/antagonists & inhibitors , Immunotherapy/methods , Lymphoma, B-Cell/drug therapy , Neoplasms/drug therapy , Animals , Antibody-Dependent Cell Cytotoxicity/immunology , Apoptosis , CD47 Antigen/immunology , Cell Proliferation , Female , Humans , Lymphoma, B-Cell/immunology , Lymphoma, B-Cell/pathology , Mice , Mice, Inbred NOD , Mice, SCID , Neoplasms/immunology , Neoplasms/pathology , Phagocytosis , Tumor Cells, Cultured , Vascular Endothelial Growth Factor A/metabolism , Xenograft Model Antitumor Assays
4.
PLoS Med ; 14(12): e1002471, 2017 Dec.
Article in English | MEDLINE | ID: mdl-29261655

ABSTRACT

BACKGROUND: Excessive haemorrhage at cesarean section requires donor (allogeneic) blood transfusion. Cell salvage may reduce this requirement. METHODS AND FINDINGS: We conducted a pragmatic randomised controlled trial (at 26 obstetric units; participants recruited from 4 June 2013 to 17 April 2016) of routine cell salvage use (intervention) versus current standard of care without routine salvage use (control) in cesarean section among women at risk of haemorrhage. Randomisation was stratified, using random permuted blocks of variable sizes. In an intention-to-treat analysis, we used multivariable models, adjusting for stratification variables and prognostic factors identified a priori, to compare rates of donor blood transfusion (primary outcome) and fetomaternal haemorrhage ≥2 ml in RhD-negative women with RhD-positive babies (a secondary outcome) between groups. Among 3,028 women randomised (2,990 analysed), 95.6% of 1,498 assigned to intervention had cell salvage deployed (50.8% had salvaged blood returned; mean 259.9 ml) versus 3.9% of 1,492 assigned to control. Donor blood transfusion rate was 3.5% in the control group versus 2.5% in the intervention group (adjusted odds ratio [OR] 0.65, 95% confidence interval [CI] 0.42 to 1.01, p = 0.056; adjusted risk difference -1.03, 95% CI -2.13 to 0.06). In a planned subgroup analysis, the transfusion rate was 4.6% in women assigned to control versus 3.0% in the intervention group among emergency cesareans (adjusted OR 0.58, 95% CI 0.34 to 0.99), whereas it was 2.2% versus 1.8% among elective cesareans (adjusted OR 0.83, 95% CI 0.38 to 1.83) (interaction p = 0.46). No case of amniotic fluid embolism was observed. The rate of fetomaternal haemorrhage was higher with the intervention (10.5% in the control group versus 25.6% in the intervention group, adjusted OR 5.63, 95% CI 1.43 to 22.14, p = 0.013). We are unable to comment on long-term antibody sensitisation effects. CONCLUSIONS: The overall reduction observed in donor blood transfusion associated with the routine use of cell salvage during cesarean section was not statistically significant. TRIAL REGISTRATION: This trial was prospectively registered on ISRCTN as trial number 66118656 and can be viewed on http://www.isrctn.com/ISRCTN66118656.


Subject(s)
Blood Loss, Surgical/prevention & control , Blood Transfusion, Autologous/methods , Cesarean Section , Operative Blood Salvage/methods , Adult , Blood Donors , Cesarean Section/adverse effects , Cesarean Section/methods , Female , Humans , Patient Care Planning , Pregnancy , Prognosis , Treatment Outcome
5.
Proc Natl Acad Sci U S A ; 109(22): 8546-51, 2012 May 29.
Article in English | MEDLINE | ID: mdl-22586108

ABSTRACT

Infectious prions containing the pathogenic conformer of the mammalian prion protein (PrP(Sc)) can be produced de novo from a mixture of the normal conformer (PrP(C)) with RNA and lipid molecules. Recent reconstitution studies indicate that nucleic acids are not required for the propagation of mouse prions in vitro, suggesting the existence of an alternative prion propagation cofactor in brain tissue. However, the identity and functional properties of this unique cofactor are unknown. Here, we show by purification and reconstitution that the molecule responsible for the nuclease-resistant cofactor activity in brain is endogenous phosphatidylethanolamine (PE). Synthetic PE alone facilitates conversion of purified recombinant (rec)PrP substrate into infectious recPrP(Sc) molecules. Other phospholipids, including phosphatidylcholine, phosphatidylserine, phosphatidylinositol, and phosphatidylglycerol, were unable to facilitate recPrP(Sc) formation in the absence of RNA. PE facilitated the propagation of PrP(Sc) molecules derived from all four different animal species tested including mouse, suggesting that unlike RNA, PE is a promiscuous cofactor for PrP(Sc) formation in vitro. Phospholipase treatment abolished the ability of brain homogenate to reconstitute the propagation of both mouse and hamster PrP(Sc) molecules. Our results identify a single endogenous cofactor able to facilitate the formation of prions from multiple species in the absence of nucleic acids or other polyanions.


Subject(s)
Brain/metabolism , Nucleic Acids/metabolism , Phosphatidylethanolamines/metabolism , Prions/metabolism , Animals , Blotting, Western , Brain/pathology , Cricetinae , Immunohistochemistry , Mice , Phosphatidylcholines/metabolism , Phosphatidylglycerols/metabolism , Phosphatidylinositols/metabolism , Phosphatidylserines/metabolism , Prions/chemistry , Prions/genetics , Protein Folding , RNA/metabolism , Recombinant Proteins/metabolism
6.
Neurobiol Dis ; 56: 6-13, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23583610

ABSTRACT

Spinocerebellar Ataxia Type 1 (SCA1) is an autosomal dominant late onset neurodegenerative disease caused by an expanded polyglutamine tract in ataxin-1. Here, we compared the protective effects of overexpressing ataxin-1-like using recombinant AAVs, or reducing expression of mutant ataxin-1 using virally delivered RNA interference (RNAi), in a transgenic mouse model of SCA1. For the latter, we used an artificial microRNA (miR) design that optimizes potency, efficacy and safety to suppress ataxin-1 expression (miS1). Delivery of either ataxin-1-like or miS1 viral vectors to SCA1 mice cerebella resulted in widespread cerebellar Purkinje cell transduction and improved behavioral and histological phenotypes. Our data indicate the utility of either approach as a possible therapy for SCA1 patients.


Subject(s)
Nerve Tissue Proteins/biosynthesis , Nuclear Proteins/biosynthesis , RNA Interference/physiology , Spinocerebellar Ataxias/therapy , Animals , Ataxin-1 , Ataxins , Behavior, Animal/physiology , Blotting, Western , Brain/pathology , Dependovirus/genetics , Gait/physiology , Genetic Vectors , HEK293 Cells , Humans , Immunohistochemistry , Immunoprecipitation , In Situ Hybridization , Locomotion/physiology , Mice , Mice, Transgenic , MicroRNAs/biosynthesis , MicroRNAs/genetics , Nerve Tissue Proteins/genetics , Nuclear Proteins/genetics , Plasmids , Postural Balance/physiology , RNA, Small Interfering/therapeutic use , Real-Time Polymerase Chain Reaction , Spinocerebellar Ataxias/pathology , Spinocerebellar Ataxias/psychology
7.
PLoS Pathog ; 7(7): e1002128, 2011 Jul.
Article in English | MEDLINE | ID: mdl-21779169

ABSTRACT

Previous studies identified two mammalian prion protein (PrP) polybasic domains that bind the disease-associated conformer PrP(Sc), suggesting that these domains of cellular prion protein (PrP(C)) serve as docking sites for PrP(Sc) during prion propagation. To examine the role of polybasic domains in the context of full-length PrP(C), we used prion proteins lacking one or both polybasic domains expressed from Chinese hamster ovary (CHO) cells as substrates in serial protein misfolding cyclic amplification (sPMCA) reactions. After ∼5 rounds of sPMCA, PrP(Sc) molecules lacking the central polybasic domain (ΔC) were formed. Surprisingly, in contrast to wild-type prions, ΔC-PrP(Sc) prions could bind to and induce quantitative conversion of all the polybasic domain mutant substrates into PrP(Sc) molecules. Remarkably, ΔC-PrP(Sc) and other polybasic domain PrP(Sc) molecules displayed diminished or absent biological infectivity relative to wild-type PrP(Sc), despite their ability to seed sPMCA reactions of normal mouse brain homogenate. Thus, ΔC-PrP(Sc) prions interact with PrP(C) molecules through a novel interaction mechanism, yielding an expanded substrate range and highly efficient PrP(Sc) propagation. Furthermore, polybasic domain deficient PrP(Sc) molecules provide the first example of dissociation between normal brain homogenate sPMCA seeding ability from biological prion infectivity. These results suggest that the propagation of PrP(Sc) molecules may not depend on a single stereotypic mechanism, but that normal PrP(C)/PrP(Sc) interaction through polybasic domains may be required to generate prion infectivity.


Subject(s)
Brain/metabolism , PrPC Proteins/metabolism , Prion Diseases/metabolism , Protein Folding , Animals , Brain/pathology , CHO Cells , Cricetinae , Cricetulus , Mice , PrPC Proteins/genetics , Prion Diseases/genetics , Prion Diseases/pathology , Protein Binding , Protein Structure, Tertiary
8.
Mol Ther ; 20(7): 1393-9, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22588273

ABSTRACT

Recombinant vector systems have been recently identified that when delivered systemically can transduce neurons, glia, and endothelia in the central nervous system (CNS), providing an opportunity to develop therapies for diseases affecting the brain without performing direct intracranial injections. Vector systems based on adeno-associated virus (AAV) include AAV serotype 9 (AAV9) and AAVs that have been re-engineered at the capsid level for CNS tropism. Here, we performed a head-to-head comparison of AAV9 and a capsid modified AAV for their abilities to rescue CNS and peripheral disease in an animal model of lysosomal storage disease (LSD), the mucopolysacharidoses (MPS) VII mouse. While the peptide-modified AAV reversed cognitive deficits, improved storage burden in the brain, and substantially prolonged survival, we were surprised to find that AAV9 provided no CNS benefit. Additional experiments demonstrated that sialic acid, a known inhibitor of AAV9, is elevated in the CNS of MPS VII mice. These studies highlight how disease manifestations can dramatically impact the known tropism of recombinant vectors, and raise awareness to assuming similar transduction profiles between normal and disease models.


Subject(s)
Brain , Dependovirus/genetics , Genetic Therapy , Mucopolysaccharidosis VII/therapy , N-Acetylneuraminic Acid/metabolism , Animals , Capsid Proteins/genetics , Disease Models, Animal , Genetic Vectors , Mice , Mice, Transgenic , Mucopolysaccharidosis VII/genetics
9.
Nat Commun ; 14(1): 2751, 2023 05 12.
Article in English | MEDLINE | ID: mdl-37173311

ABSTRACT

Understanding the longitudinal dynamics of antibody immunity following heterologous SAR-CoV-2 breakthrough infection will inform the development of next-generation vaccines. Here, we track SARS-CoV-2 receptor binding domain (RBD)-specific antibody responses up to six months following Omicron BA.1 breakthrough infection in six mRNA-vaccinated individuals. Cross-reactive serum neutralizing antibody and memory B cell (MBC) responses decline by two- to four-fold through the study period. Breakthrough infection elicits minimal de novo Omicron BA.1-specific B cell responses but drives affinity maturation of pre-existing cross-reactive MBCs toward BA.1, which translates into enhanced breadth of activity across other variants. Public clones dominate the neutralizing antibody response at both early and late time points following breakthough infection, and their escape mutation profiles predict newly emergent Omicron sublineages, suggesting that convergent antibody responses continue to shape SARS-CoV-2 evolution. While the study is limited by our relatively small cohort size, these results suggest that heterologous SARS-CoV-2 variant exposure drives the evolution of B cell memory, supporting the continued development of next-generation variant-based vaccines.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , Breakthrough Infections , Antibodies, Neutralizing , Antibodies, Viral , Broadly Neutralizing Antibodies
10.
Sci Transl Med ; 15(688): eadg2783, 2023 03 22.
Article in English | MEDLINE | ID: mdl-36947596

ABSTRACT

Multiple studies of vaccinated and convalescent cohorts have demonstrated that serum neutralizing antibody (nAb) titers correlate with protection against coronavirus disease 2019 (COVID-19). However, the induction of multiple layers of immunity after severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) exposure has complicated the establishment of nAbs as a mechanistic correlate of protection (CoP) and hindered the definition of a protective nAb threshold. Here, we show that a half-life-extended monoclonal antibody (adintrevimab) provides about 50% protection against symptomatic COVID-19 in SARS-CoV-2-naïve adults at serum nAb titers on the order of 1:30. Vaccine modeling results support a similar 50% protective nAb threshold, suggesting that low titers of serum nAbs protect in both passive antibody prophylaxis and vaccination settings. Extrapolation of adintrevimab pharmacokinetic data suggests that protection against susceptible variants could be maintained for about 3 years. The results provide a benchmark for the selection of next-generation vaccine candidates and support the use of broad, long-acting monoclonal antibodies as alternatives or supplements to vaccination in high-risk populations.


Subject(s)
COVID-19 , Adult , Humans , SARS-CoV-2 , Antibodies, Neutralizing , Antibodies, Viral , Vaccination , Antibodies, Monoclonal/therapeutic use
11.
Sci Transl Med ; 15(700): eadg1855, 2023 06 14.
Article in English | MEDLINE | ID: mdl-37315110

ABSTRACT

Emerging rodent-borne hantaviruses cause severe diseases in humans with no approved vaccines or therapeutics. We recently isolated a monoclonal broadly neutralizing antibody (nAb) from a Puumala virus-experienced human donor. Here, we report its structure bound to its target, the Gn/Gc glycoprotein heterodimer comprising the viral fusion complex. The structure explains the broad activity of the nAb: It recognizes conserved Gc fusion loop sequences and the main chain of variable Gn sequences, thereby straddling the Gn/Gc heterodimer and locking it in its prefusion conformation. We show that the nAb's accelerated dissociation from the divergent Andes virus Gn/Gc at endosomal acidic pH limits its potency against this highly lethal virus and correct this liability by engineering an optimized variant that sets a benchmark as a candidate pan-hantavirus therapeutic.


Subject(s)
Antibodies, Viral , Orthohantavirus , Humans , Benchmarking , Broadly Neutralizing Antibodies , Conserved Sequence
12.
medRxiv ; 2022 Oct 19.
Article in English | MEDLINE | ID: mdl-36299436

ABSTRACT

Multiple studies of vaccinated and convalescent cohorts have demonstrated that serum neutralizing antibody (nAb) titers correlate with protection against COVID-19. However, the induction of multiple layers of immunity following SARS-CoV-2 exposure has complicated the establishment of nAbs as a mechanistic correlate of protection (CoP) and hindered the definition of a protective nAb threshold. Here, we show that a half-life extended monoclonal antibody (adintrevimab) provides approximately 50% protection against symptomatic COVID-19 in SARS-CoV-2-naive adults at low serum nAb titers on the order of 1:30. Vaccine modeling supports a similar 50% protective nAb threshold, suggesting low levels of serum nAb can protect in both monoclonal and polyclonal settings. Extrapolation of adintrevimab pharmacokinetic data suggests that protection against susceptible variants could be maintained for approximately 3 years. The results provide a benchmark for the selection of next-generation vaccine candidates and support the use of broad, long-acting monoclonal antibodies as an alternative or supplement to vaccination in high-risk populations.

13.
bioRxiv ; 2022 Sep 22.
Article in English | MEDLINE | ID: mdl-36172124

ABSTRACT

Understanding the evolution of antibody immunity following heterologous SAR-CoV-2 breakthrough infection will inform the development of next-generation vaccines. Here, we tracked SARS-CoV-2 receptor binding domain (RBD)-specific antibody responses up to six months following Omicron BA.1 breakthrough infection in mRNA-vaccinated individuals. Cross-reactive serum neutralizing antibody and memory B cell (MBC) responses declined by two- to four-fold through the study period. Breakthrough infection elicited minimal de novo Omicron-specific B cell responses but drove affinity maturation of pre-existing cross-reactive MBCs toward BA.1. Public clones dominated the neutralizing antibody response at both early and late time points, and their escape mutation profiles predicted newly emergent Omicron sublineages. The results demonstrate that heterologous SARS-CoV-2 variant exposure drives the evolution of B cell memory and suggest that convergent neutralizing antibody responses continue to shape viral evolution.

14.
Sci Transl Med ; 14(636): eabl5399, 2022 03 16.
Article in English | MEDLINE | ID: mdl-35294259

ABSTRACT

The rodent-borne hantavirus Puumala virus (PUUV) and related agents cause hemorrhagic fever with renal syndrome (HFRS) in humans. Other hantaviruses, including Andes virus (ANDV) and Sin Nombre virus, cause a distinct zoonotic disease, hantavirus cardiopulmonary syndrome (HCPS). Although these infections are severe and have substantial case fatality rates, no FDA-approved hantavirus countermeasures are available. Recent work suggests that monoclonal antibodies may have therapeutic utility. We describe here the isolation of human neutralizing antibodies (nAbs) against tetrameric Gn/Gc glycoprotein spikes from PUUV-experienced donors. We define a dominant class of nAbs recognizing the "capping loop" of Gn that masks the hydrophobic fusion loops in Gc. A subset of nAbs in this class, including ADI-42898, bound Gn/Gc complexes but not Gn alone, strongly suggesting that they recognize a quaternary epitope encompassing both Gn and Gc. ADI-42898 blocked the cell entry of seven HCPS- and HFRS-associated hantaviruses, and single doses of this nAb could protect Syrian hamsters and bank voles challenged with the highly virulent HCPS-causing ANDV and HFRS-causing PUUV, respectively. ADI-42898 is a promising candidate for clinical development as a countermeasure for both HCPS and HFRS, and its mode of Gn/Gc recognition informs the development of broadly protective hantavirus vaccines.


Subject(s)
Hantavirus Infections , Hemorrhagic Fever with Renal Syndrome , Orthohantavirus , Puumala virus , Animals , Antibodies, Neutralizing , Antibodies, Viral , Cricetinae , Epitopes , Glycoproteins , Hemorrhagic Fever with Renal Syndrome/prevention & control , Humans
15.
PLoS Pathog ; 5(7): e1000535, 2009 Jul.
Article in English | MEDLINE | ID: mdl-19649330

ABSTRACT

Previous studies identified prion protein (PrP) mutants which act as dominant negative inhibitors of prion formation through a mechanism hypothesized to require an unidentified species-specific cofactor termed protein X. To study the mechanism of dominant negative inhibition in vitro, we used recombinant PrP(C) molecules expressed in Chinese hamster ovary cells as substrates in serial protein misfolding cyclic amplification (sPMCA) reactions. Bioassays confirmed that the products of these reactions are infectious. Using this system, we find that: (1) trans-dominant inhibition can be dissociated from conversion activity, (2) dominant-negative inhibition of prion formation can be reconstituted in vitro using only purified substrates, even when wild type (WT) PrP(C) is pre-incubated with poly(A) RNA and PrP(Sc) template, and (3) Q172R is the only hamster PrP mutant tested that fails to convert into PrP(Sc) and that can dominantly inhibit conversion of WT PrP at sub-stoichiometric levels. These results refute the hypothesis that protein X is required to mediate dominant inhibition of prion propagation, and suggest that PrP molecules compete for binding to a nascent seeding site on newly formed PrP(Sc) molecules, most likely through an epitope containing residue 172.


Subject(s)
Prion Diseases/metabolism , Prions/metabolism , Animals , Biological Assay/methods , Brain Chemistry , Brain Stem/chemistry , Brain Stem/metabolism , CHO Cells , Cricetinae , Cricetulus , Histocytochemistry , Mice , Models, Biological , PrPC Proteins/chemistry , PrPC Proteins/metabolism , Prions/antagonists & inhibitors , Prions/chemistry , Protein Folding , RNA, Messenger/metabolism
16.
Sci Immunol ; 6(56)2021 02 23.
Article in English | MEDLINE | ID: mdl-33622975

ABSTRACT

A comprehensive understanding of the kinetics and evolution of the human B cell response to SARS-CoV-2 infection will facilitate the development of next-generation vaccines and therapies. Here, we longitudinally profiled this response in mild and severe COVID-19 patients over a period of five months. Serum neutralizing antibody (nAb) responses waned rapidly but spike (S)-specific IgG+ memory B cells (MBCs) remained stable or increased over time. Analysis of 1,213 monoclonal antibodies (mAbs) isolated from S-specific MBCs revealed a primarily de novo response that displayed increased somatic hypermutation, binding affinity, and neutralization potency over time, providing evidence for prolonged antibody affinity maturation. B cell immunodominance hierarchies were similar across donor repertoires and remained relatively stable as the immune response progressed. Cross-reactive B cell populations, likely re-called from prior endemic beta-coronavirus exposures, comprised a small but stable fraction of the repertoires and did not contribute to the neutralizing response. The neutralizing antibody response was dominated by public clonotypes that displayed significantly reduced activity against SARS-CoV-2 variants emerging in Brazil and South Africa that harbor mutations at positions 501, 484 and 417 in the S protein. Overall, the results provide insight into the dynamics, durability, and functional properties of the human B cell response to SARS-CoV-2 infection and have implications for the design of immunogens that preferentially stimulate protective B cell responses.


Subject(s)
B-Lymphocytes/immunology , COVID-19/immunology , Adult , Aged , Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Binding Sites , COVID-19/virology , Cohort Studies , Cross Reactions , Female , Humans , Immunologic Memory , Longitudinal Studies , Male , Middle Aged , SARS-CoV-2/immunology
17.
Science ; 371(6531): 823-829, 2021 02 19.
Article in English | MEDLINE | ID: mdl-33495307

ABSTRACT

The recurrent zoonotic spillover of coronaviruses (CoVs) into the human population underscores the need for broadly active countermeasures. We employed a directed evolution approach to engineer three severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antibodies for enhanced neutralization breadth and potency. One of the affinity-matured variants, ADG-2, displays strong binding activity to a large panel of sarbecovirus receptor binding domains and neutralizes representative epidemic sarbecoviruses with high potency. Structural and biochemical studies demonstrate that ADG-2 employs a distinct angle of approach to recognize a highly conserved epitope that overlaps the receptor binding site. In immunocompetent mouse models of SARS and COVID-19, prophylactic administration of ADG-2 provided complete protection against respiratory burden, viral replication in the lungs, and lung pathology. Altogether, ADG-2 represents a promising broad-spectrum therapeutic candidate against clade 1 sarbecoviruses.


Subject(s)
Antibodies, Monoclonal/immunology , Antibodies, Viral/immunology , Betacoronavirus/immunology , Broadly Neutralizing Antibodies/immunology , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Angiotensin-Converting Enzyme 2/metabolism , Animals , Antibodies, Monoclonal/genetics , Antibodies, Monoclonal/metabolism , Antibodies, Viral/genetics , Antibodies, Viral/metabolism , Antibody Affinity , Binding Sites , Binding Sites, Antibody , Broadly Neutralizing Antibodies/genetics , Broadly Neutralizing Antibodies/metabolism , COVID-19/prevention & control , COVID-19/therapy , Cell Surface Display Techniques , Directed Molecular Evolution , Epitopes/immunology , Humans , Immunization, Passive , Immunoglobulin Fc Fragments/immunology , Mice, Inbred BALB C , Protein Domains , Protein Engineering , Receptors, Coronavirus/metabolism , Severe acute respiratory syndrome-related coronavirus/immunology , Severe Acute Respiratory Syndrome/immunology , Severe Acute Respiratory Syndrome/prevention & control , Severe Acute Respiratory Syndrome/therapy , Spike Glycoprotein, Coronavirus/metabolism , COVID-19 Serotherapy
18.
Biochemistry ; 49(18): 3928-34, 2010 May 11.
Article in English | MEDLINE | ID: mdl-20377181

ABSTRACT

The cofactor preferences for in vitro propagation of the protease-resistant isoforms of the prion protein (PrP(Sc)) from various rodent species were investigated using the serial protein misfolding cyclic amplification (sPMCA) technique. Whereas RNA molecules facilitate hamster PrP(Sc) propagation, RNA and several other polyanions do not promote the propagation of mouse and vole PrP(Sc) molecules. Pretreatment of crude Prnp(0/0) (PrP knockout) brain homogenate with RNase A or micrococcal nuclease inhibited hamster but not mouse PrP(Sc) propagation in a reconstituted system. Mouse PrP(Sc) propagation could be reconstituted by mixing PrP(C) substrate with homogenates prepared from either brain or liver, but not from several other tissues that were tested. These results reveal species-specific differences in cofactor utilization for PrP(Sc) propagation in vitro and also demonstrate the existence of an endogenous cofactor present in brain tissue not composed of nucleic acids.


Subject(s)
Coenzymes/chemistry , Peptide Hydrolases/chemistry , PrPSc Proteins/chemistry , Animals , Arvicolinae , CHO Cells , Cricetinae , Cricetulus , Mice , Protein Binding , Protein Stability , RNA/chemistry , Rats , Species Specificity
19.
bioRxiv ; 2020 Nov 17.
Article in English | MEDLINE | ID: mdl-33236009

ABSTRACT

The recurrent zoonotic spillover of coronaviruses (CoVs) into the human population underscores the need for broadly active countermeasures. Here, we employed a directed evolution approach to engineer three SARS-CoV-2 antibodies for enhanced neutralization breadth and potency. One of the affinity-matured variants, ADG-2, displays strong binding activity to a large panel of sarbecovirus receptor binding domains (RBDs) and neutralizes representative epidemic sarbecoviruses with remarkable potency. Structural and biochemical studies demonstrate that ADG-2 employs a unique angle of approach to recognize a highly conserved epitope overlapping the receptor binding site. In murine models of SARS-CoV and SARS-CoV-2 infection, passive transfer of ADG-2 provided complete protection against respiratory burden, viral replication in the lungs, and lung pathology. Altogether, ADG-2 represents a promising broad-spectrum therapeutic candidate for the treatment and prevention of SARS-CoV-2 and future emerging SARS-like CoVs.

20.
BMJ Open ; 9(2): e022352, 2019 02 19.
Article in English | MEDLINE | ID: mdl-30782867

ABSTRACT

OBJECTIVES: To evaluate the cost-effectiveness of routine use of cell salvage during caesarean section in mothers at risk of haemorrhage compared with current standard of care. DESIGN: Model-based cost-effectiveness evaluation alongside a multicentre randomised controlled trial. Three main analyses were carried out on the trial data: (1) based on the intention-to-treat principle; (2) based on the per-protocol principle; (3) only participants who underwent an emergency caesarean section. SETTING: 26 obstetric units in the UK. PARTICIPANTS: 3028 women at risk of haemorrhage recruited between June 2013 and April 2016. INTERVENTIONS: Cell salvage (intervention) versus routine care without salvage (control). PRIMARY OUTCOME MEASURES: Cost-effectiveness based on incremental cost per donor blood transfusion avoided. RESULTS: In the intention-to-treat analysis, the mean difference in total costs between cell salvage and standard care was £83. The estimated incremental cost-effectiveness ratio (ICER) was £8110 per donor blood transfusion avoided. For the per-protocol analysis, the mean difference in total costs was £92 and the ICER was £8252. In the emergency caesarean section analysis, the mean difference in total costs was £55 and the ICER was £13 713 per donor blood transfusion avoided. This ICER is driven by the increased probability that these patients would require a higher level of postoperative care and additional surgeries. The results of these analyses were shown to be robust for the majority of deterministic sensitivity analyses. CONCLUSIONS: The results of the economic evaluation suggest that while routine cell salvage is a marginally more effective strategy than standard care in avoiding a donor blood transfusion, there is uncertainty in relation to whether it is a less or more costly strategy. The lack of long-term data on the health and quality of life of patients in both arms of the trial means that further research is needed to fully understand the cost implications of both strategies. TRIAL REGISTRATION NUMBER: ISRCTN66118656.


Subject(s)
Blood Transfusion/statistics & numerical data , Cesarean Section/methods , Hemorrhage/therapy , Operative Blood Salvage/statistics & numerical data , Blood Transfusion/methods , Cesarean Section/adverse effects , Cost-Benefit Analysis , Female , Hemorrhage/etiology , Humans , Operative Blood Salvage/adverse effects , Operative Blood Salvage/methods , Pregnancy , Quality of Life , Quality-Adjusted Life Years , United Kingdom
SELECTION OF CITATIONS
SEARCH DETAIL