Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 109
Filter
1.
Annu Rev Pharmacol Toxicol ; 60: 291-309, 2020 01 06.
Article in English | MEDLINE | ID: mdl-31914899

ABSTRACT

Cerebral edema, a common and often fatal companion to most forms of acute central nervous system disease, has been recognized since the time of ancient Egypt. Unfortunately, our therapeutic armamentarium remains limited, in part due to historic limitations in our understanding of cerebral edema pathophysiology. Recent advancements have led to a number of clinical trials for novel therapeutics that could fundamentally alter the treatment of cerebral edema. In this review, we discuss these agents, their targets, and the data supporting their use, with a focus on agents that have progressed to clinical trials.


Subject(s)
Brain Edema/drug therapy , Drug Development , Animals , Brain Edema/physiopathology , Clinical Trials as Topic , Humans , Molecular Targeted Therapy
2.
Crit Care Med ; 51(2): e45-e59, 2023 02 01.
Article in English | MEDLINE | ID: mdl-36661464

ABSTRACT

OBJECTIVES: Addressing traumatic brain injury (TBI) heterogeneity is increasingly recognized as essential for therapy translation given the long history of failed clinical trials. We evaluated differential effects of a promising treatment (glibenclamide) based on dose, TBI type (patient selection), and imaging endophenotype (outcome selection). Our goal to inform TBI precision medicine is contextually timely given ongoing phase 2/planned phase 3 trials of glibenclamide in brain contusion. DESIGN: Blinded randomized controlled preclinical trial of glibenclamide on MRI endophenotypes in two established severe TBI models: controlled cortical impact (CCI, isolated brain contusion) and CCI+hemorrhagic shock (HS, clinically common second insult). SETTING: Preclinical laboratory. SUBJECTS: Adult male C57BL/6J mice (n = 54). INTERVENTIONS: Mice were randomized to naïve, CCI±HS with vehicle/low-dose (20 µg/kg)/high-dose glibenclamide (10 µg/mouse). Seven-day subcutaneous infusions (0.4 µg/hr) were continued. MEASUREMENTS AND MAIN RESULTS: Serial MRI (3 hr, 6 hr, 24 hr, and 7 d) measured hematoma and edema volumes, T2 relaxation (vasogenic edema), apparent diffusion coefficient (ADC, cellular/cytotoxic edema), and 7-day T1-post gadolinium values (blood-brain-barrier [BBB] integrity). Linear mixed models assessed temporal changes. Marked heterogeneity was observed between CCI versus CCI+HS in terms of different MRI edema endophenotypes generated (all p < 0.05). Glibenclamide had variable impact. High-dose glibenclamide reduced hematoma volume ~60% after CCI (p = 0.0001) and ~48% after CCI+HS (p = 4.1 × 10-6) versus vehicle. Antiedema benefits were primarily in CCI: high-dose glibenclamide normalized several MRI endophenotypes in ipsilateral cortex (all p < 0.05, hematoma volume, T2, ADC, and T1-post contrast). Acute effects (3 hr) were specific to hematoma (p = 0.001) and cytotoxic edema reduction (p = 0.0045). High-dose glibenclamide reduced hematoma volume after TBI with concomitant HS, but antiedema effects were not robust. Low-dose glibenclamide was not beneficial. CONCLUSIONS: High-dose glibenclamide benefitted hematoma volume, vasogenic edema, cytotoxic edema, and BBB integrity after isolated brain contusion. Hematoma and cytotoxic edema effects were acute; longer treatment windows may be possible for vasogenic edema. Our findings provide new insights to inform interpretation of ongoing trials as well as precision design (dose, sample size estimation, patient selection, outcome selection, and Bayesian analysis) of future TBI trials of glibenclamide.


Subject(s)
Brain Contusion , Brain Edema , Brain Injuries, Traumatic , Brain Injuries , Animals , Male , Mice , Bayes Theorem , Brain Contusion/complications , Brain Contusion/drug therapy , Brain Edema/diagnostic imaging , Brain Edema/drug therapy , Brain Edema/etiology , Brain Injuries/drug therapy , Brain Injuries, Traumatic/diagnostic imaging , Brain Injuries, Traumatic/drug therapy , Brain Injuries, Traumatic/complications , Disease Models, Animal , Endophenotypes , Glyburide/pharmacology , Glyburide/therapeutic use , Magnetic Resonance Imaging , Mice, Inbred C57BL
3.
J Neuroinflammation ; 19(1): 238, 2022 Oct 01.
Article in English | MEDLINE | ID: mdl-36183126

ABSTRACT

BACKGROUND: Pathophysiological consequences of traumatic brain injury (TBI) mediated secondary injury remain incompletely understood. In particular, the impact of TBI on the differentiation and maintenance of dendritic cells (DCs), which are regarded as the most professional antigen presenting cells of the immune system, remains completely unknown. Here, we report that DC-differentiation, maintenance and functions are altered on day 3 and day 7 after TBI. METHODS: Long bones, spleen, peripheral lymph nodes (pLNs), mesenteric lymph nodes (mLNs), liver, lungs, skin and blood were collected from mice with either moderate-level cortical impact (CCI) or sham on day 1, day 3 or day 7 after TBI. Bone marrow cells were isolated from the tibias and femurs of hind limb through flushing. Tissues were digested with Collagenase-D and DNase I. Skin biopsies were digested in the presence of liberase + DNase I. Single cell suspensions were made, red blood cells were lysed with Ammonium chloride (Stem Cell Technology) and subsequently filtered using a 70 µM nylon mesh. DC subsets of the tissues and DC progenitors of the BM were identified through 10-color flow cytometry-based immunophenotyping studies. Intracellular reactive oxygen species (ROS) were identified through H2DCFDA staining. RESULTS: Our studies identify that; (1) frequencies and absolute numbers of DCs in the spleen and BM are altered on day 3 and day 7 after TBI; (2) surface expression of key molecules involved in antigen presentation of DCs were affected on day 3 and day 7 after TBI; (3) distribution and functions of tissue-specific DC subsets of both circulatory and lymphatic systems were imbalanced following TBI; (4) early differentiation program of DCs, especially the commitment of hematopoietic stem cells to common DC progenitors (CDPs), were deregulated after TBI; and (5) intracellular ROS levels were reduced in DC progenitors and differentiated DCs on day 3 and day 7 after TBI. CONCLUSIONS: Our data demonstrate, for the first time, that TBI affects the distribution pattern of DCs and induces an imbalance among DC subsets in both lymphoid and non-lymphoid organs. In addition, the current study demonstrates that TBI results in reduced levels of ROS in DCs on day 3 and day 7 after TBI, which may explain altered DC differentiation paradigm following TBI. A deeper understanding on the molecular mechanisms that contribute to DC defects following TBI would be essential and beneficial in treating infections in patients with acute central nervous system (CNS) injuries, such as TBI, stroke and spinal cord injury.


Subject(s)
Brain Injuries, Traumatic , Dendritic Cells , Ammonium Chloride/metabolism , Animals , Brain Injuries, Traumatic/metabolism , Cell Differentiation , Deoxyribonuclease I/metabolism , Hematopoietic Stem Cells/metabolism , Mice , Nylons/metabolism , Reactive Oxygen Species/metabolism
4.
Mol Pain ; 17: 17448069211006603, 2021.
Article in English | MEDLINE | ID: mdl-33788643

ABSTRACT

BACKGROUND: Neuropathic pain following peripheral nerve injury (PNI) is linked to neuroinflammation in the spinal cord marked by astrocyte activation and upregulation of interleukin 6 (IL-6), chemokine (C-C motif) ligand 2 (CCL2) and chemokine (C-X-C motif) ligand 1 (CXCL1), with inhibition of each individually being beneficial in pain models. METHODS: Wild type (WT) mice and mice with global or pGfap-cre- or pGFAP-cre/ERT2-driven Abcc8/SUR1 deletion or global Trpm4 deletion underwent unilateral sciatic nerve cuffing. WT mice received prophylactic (starting on post-operative day [pod]-0) or therapeutic (starting on pod-21) administration of the SUR1 antagonist, glibenclamide (10 µg IP) daily. We measured mechanical and thermal sensitivity using von Frey filaments and an automated Hargreaves method. Spinal cord tissues were evaluated for SUR1-TRPM4, IL-6, CCL2 and CXCL1. RESULTS: Sciatic nerve cuffing in WT mice resulted in pain behaviors (mechanical allodynia, thermal hyperalgesia) and newly upregulated SUR1-TRPM4 in dorsal horn astrocytes. Global and pGfap-cre-driven Abcc8 deletion and global Trpm4 deletion prevented development of pain behaviors. In mice with Abcc8 deletion regulated by pGFAP-cre/ERT2, after pain behaviors were established, delayed silencing of Abcc8 by tamoxifen resulted in gradual improvement over the next 14 days. After PNI, leakage of the blood-spinal barrier allowed entry of glibenclamide into the affected dorsal horn. Daily repeated administration of glibenclamide, both prophylactically and after allodynia was established, prevented or reduced allodynia. The salutary effects of glibenclamide on pain behaviors correlated with reduced expression of IL-6, CCL2 and CXCL1 by dorsal horn astrocytes. CONCLUSION: SUR1-TRPM4 may represent a novel non-addicting target for neuropathic pain.


Subject(s)
Astrocytes/metabolism , Neuralgia/metabolism , Peripheral Nerve Injuries/metabolism , Sulfonylurea Receptors/metabolism , Animals , Disease Models, Animal , Hyperalgesia/metabolism , Mice, Inbred C57BL , Neuralgia/physiopathology , Sciatic Nerve/metabolism , Spinal Cord/metabolism , Spinal Cord Dorsal Horn/metabolism
5.
Glia ; 66(1): 108-125, 2018 01.
Article in English | MEDLINE | ID: mdl-28906027

ABSTRACT

Astrocyte swelling occurs after central nervous system injury and contributes to brain swelling, which can increase mortality. Mechanisms proffered to explain astrocyte swelling emphasize the importance of either aquaporin-4 (AQP4), an astrocyte water channel, or of Na+ -permeable channels, which mediate cellular osmolyte influx. However, the spatio-temporal functional interactions between AQP4 and Na+ -permeable channels that drive swelling are poorly understood. We hypothesized that astrocyte swelling after injury is linked to an interaction between AQP4 and Na+ -permeable channels that are newly upregulated. Here, using co-immunoprecipitation and Förster resonance energy transfer, we report that AQP4 physically co-assembles with the sulfonylurea receptor 1-transient receptor potential melastatin 4 (SUR1-TRPM4) monovalent cation channel to form a novel heteromultimeric water/ion channel complex. In vitro cell-swelling studies using calcein fluorescence imaging of COS-7 cells expressing various combinations of AQP4, SUR1, and TRPM4 showed that the full tripartite complex, comprised of SUR1-TRPM4-AQP4, was required for fast, high-capacity transmembrane water transport that drives cell swelling, with these findings corroborated in cultured primary astrocytes. In a murine model of brain edema involving cold-injury to the cerebellum, we found that astrocytes newly upregulate SUR1-TRPM4, that AQP4 co-associates with SUR1-TRPM4, and that genetic inactivation of the solute pore of the SUR1-TRPM4-AQP4 complex blocked in vivo astrocyte swelling measured by diolistic labeling, thereby corroborating our in vitro functional studies. Together, these findings demonstrate a novel molecular mechanism involving the SUR1-TRPM4-AQP4 complex to account for bulk water influx during astrocyte swelling. These findings have broad implications for the understanding and treatment of AQP4-mediated pathological conditions.


Subject(s)
Aquaporin 4/metabolism , Astrocytes/metabolism , Multiprotein Complexes/metabolism , Sulfonylurea Receptors/metabolism , TRPM Cation Channels/metabolism , Animals , Aquaporin 4/genetics , Astrocytes/pathology , Brain Edema/pathology , Cells, Cultured , Cerebellum/pathology , Chlorocebus aethiops , Disease Models, Animal , Edema/genetics , Edema/metabolism , Fluoresceins/metabolism , Humans , Male , Membrane Potentials/genetics , Membrane Potentials/physiology , Mice , Mice, Inbred C57BL , Multiprotein Complexes/genetics , Osmotic Pressure/physiology , Potassium Channels, Inwardly Rectifying/genetics , Potassium Channels, Inwardly Rectifying/metabolism , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , Sulfonylurea Receptors/genetics , TRPM Cation Channels/genetics
6.
Brain Inj ; 32(13-14): 1866-1878, 2018.
Article in English | MEDLINE | ID: mdl-30346868

ABSTRACT

Blast-induced traumatic brain injury (blast-TBI) is associated with vestibulomotor dysfunction, persistent post-traumatic headaches and post-traumatic stress disorder, requiring extensive treatments and reducing quality-of-life. Treatment and prevention of these devastating outcomes require an understanding of their underlying pathophysiology through studies that take advantage of animal models. Here, we report that cranium-directed blast-TBI in rats results in signs of pain that last at least 8 weeks after injury. These occur without significantly elevated behavioural markers of anxiety-like conditions and are not associated with glial up-regulation in sensory thalamic nuclei. These injuries also produce transient vestibulomotor abnormalities that resolve within 3 weeks of injury. Thus, blast-TBI in rats recapitulates aspects of the human condition.


Subject(s)
Brain Injuries/complications , Facial Pain/etiology , Reflex, Vestibulo-Ocular/physiology , Sensation Disorders/etiology , Analysis of Variance , Animals , Blast Injuries/complications , Brain Injuries/etiology , Dark Adaptation/physiology , Disease Models, Animal , Exploratory Behavior/physiology , Hyperalgesia/diagnosis , Hyperalgesia/etiology , Male , Maze Learning , Neuroglia/metabolism , Neuroglia/pathology , Pain Measurement , Pain Threshold/physiology , Physical Stimulation/adverse effects , Postural Balance , Rats , Rats, Long-Evans , Rotarod Performance Test , Thalamus/pathology , Time Factors
7.
Neurocrit Care ; 29(2): 253-263, 2018 10.
Article in English | MEDLINE | ID: mdl-29700692

ABSTRACT

BACKGROUND: Spontaneous intracerebral hemorrhage (ICH) leaves most survivors dependent at follow-up. The importance of promoting M2-like microglial responses is increasingly recognized as a key element to ameliorate brain injury following ICH. The osmotherapeutic agents, mannitol and hypertonic saline (HTS), which are routinely used to reduce intracranial pressure, have been shown to reduce neuroinflammation in experimental ischemic and traumatic brain injury, but anti-inflammatory effects of osmotherapies have not been investigated in ICH. METHODS: We studied the effects of iso-osmotic mannitol and HTS in rat models of ICH utilizing high-dose and moderate-dose collagenase injections into the basal ganglia, associated with high and low mortality, respectively. We studied the effects of osmotherapies, first given 5 h after ICH induction, and then administered every 12 h thereafter (4 doses total). Immunohistochemistry was used to quantify microglial activation and polarization. RESULTS: Compared to controls, mannitol and HTS increased plasma osmolarity 1 h after infusion (301 ± 1.5, 315 ± 4.2 and 310 ± 2.0 mOsm/kg, respectively), reduced mortality at 48 h (82, 36 and 53%, respectively), and reduced hemispheric swelling at 48 h (32, 21, and 17%, respectively). In both perihematomal and contralateral tissues, mannitol and HTS reduced activation of microglia/macrophages (abundance and morphology of Iba1 + cells), and in perihematomal tissues, they reduced markers of the microglia/macrophage M1-like phenotype (nuclear p65, TNF, and NOS2), increased markers of the microglia/macrophage M2-like phenotype (arginase, YM1, and pSTAT3), and reduced infiltration of CD45 + cells. CONCLUSIONS: Repeated dosing of osmotherapeutics at regular intervals may be a useful adjunct to reduce neuroinflammation following ICH.


Subject(s)
Brain Edema/drug therapy , Cerebral Hemorrhage/drug therapy , Diuretics, Osmotic/pharmacology , Inflammation/drug therapy , Macrophages/drug effects , Mannitol/pharmacology , Microglia/drug effects , Saline Solution, Hypertonic/pharmacology , Animals , Brain Edema/etiology , Cerebral Hemorrhage/complications , Disease Models, Animal , Diuretics, Osmotic/administration & dosage , Humans , Inflammation/etiology , Inflammation/metabolism , Male , Rats , Rats, Wistar , Saline Solution, Hypertonic/administration & dosage
8.
J Neuroinflammation ; 14(1): 177, 2017 Sep 02.
Article in English | MEDLINE | ID: mdl-28865458

ABSTRACT

BACKGROUND: In multiple sclerosis (MS) and experimental autoimmune encephalomyelitis (EAE), inflammation is perpetuated by both infiltrating leukocytes and astrocytes. Recent work implicated SUR1-TRPM4 channels, expressed mostly by astrocytes, in murine EAE. We tested the hypothesis that pharmacological inhibition of SUR1 during the chronic phase of EAE would be beneficial. METHODS: EAE was induced in mice using myelin oligodendrocyte glycoprotein (MOG) 35-55. Glibenclamide (10 µg/day) was administered beginning 12 or 24 days later. The effects of treatment were determined by clinical scoring and tissue examination. Drug within EAE lesions was identified using bodipy-glibenclamide. The role of SUR1-TRPM4 in primary astrocytes was characterized using patch clamp and qPCR. Demyelinating lesions from MS patients were studied by immunolabeling and immunoFRET. RESULTS: Administering glibenclamide beginning 24 days after MOG35-55 immunization, well after clinical symptoms had plateaued, improved clinical scores, reduced myelin loss, inflammation (CD45, CD20, CD3, p65), and reactive astrocytosis, improved macrophage phenotype (CD163), and decreased expression of tumor necrosis factor (TNF), B-cell activating factor (BAFF), chemokine (C-C motif) ligand 2 (CCL2) and nitric oxide synthase 2 (NOS2) in lumbar spinal cord white matter. Glibenclamide accumulated within EAE lesions, and had no effect on leukocyte sequestration. In primary astrocyte cultures, activation by TNF plus IFNγ induced de novo expression of SUR1-TRPM4 channels and upregulated Tnf, Baff, Ccl2, and Nos2 mRNA, with glibenclamide blockade of SUR1-TRPM4 reducing these mRNA increases. In demyelinating lesions from MS patients, astrocytes co-expressed SUR1-TRPM4 and BAFF, CCL2, and NOS2. CONCLUSIONS: SUR1-TRPM4 may be a druggable target for disease modification in MS.


Subject(s)
Encephalomyelitis, Autoimmune, Experimental/drug therapy , Encephalomyelitis, Autoimmune, Experimental/metabolism , Glyburide/administration & dosage , Multiple Sclerosis/metabolism , Sulfonylurea Receptors/biosynthesis , TRPM Cation Channels/biosynthesis , Adult , Aged , Animals , Astrocytes/drug effects , Astrocytes/metabolism , Astrocytes/pathology , Encephalomyelitis, Autoimmune, Experimental/pathology , Female , Glyburide/metabolism , Humans , Hypoglycemic Agents/administration & dosage , Hypoglycemic Agents/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Middle Aged , Multiple Sclerosis/pathology , Treatment Outcome
9.
Neurocrit Care ; 26(2): 301-310, 2017 04.
Article in English | MEDLINE | ID: mdl-27995510

ABSTRACT

A growing body of clinical literature emphasizes the impact of cerebral edema in early brain injury following aneurysmal subarachnoid hemorrhage (aSAH). Aneurysm rupture itself initiates global cerebral edema in up to two thirds of cases. Although cerebral edema is not a universal feature of aSAH, it portends a poor clinical course, with quantitative analysis revealing a direct correlation between cerebral edema and poor outcome, including mortality and cognitive deficits. Mechanistically, global cerebral edema has been linked to global ischemia at the time of aneurysm rupture, dysfunction of autoregulation, blood breakdown products, neuroinflammation, and hyponatremia/endocrine abnormalities. At a molecular level, several culprits have been identified, including aquaporin-4, matrix metalloproteinase-9, SUR1-TRPM4 cation channels, vascular endothelial growth factor, bradykinin, and others. Here, we review these cellular and molecular mechanisms of global cerebral edema formation in aSAH. Given the importance of edema to the outcome of patients with aSAH and its status as a highly modifiable pathological process, a better understanding of cerebral edema in aSAH promises to hasten the development of medical therapies to improve outcomes in this frequently devastating disease.


Subject(s)
Brain Edema/etiology , Subarachnoid Hemorrhage/complications , Animals , Humans
10.
J Neuroinflammation ; 13(1): 130, 2016 06 01.
Article in English | MEDLINE | ID: mdl-27246103

ABSTRACT

BACKGROUND: Harmful effects of activated microglia are due, in part, to the formation of peroxynitrite radicals, which is attributable to the upregulation of inducible nitric oxide (NO) synthase (NOS2). Because NOS2 expression is determined by Ca(2+)-sensitive calcineurin (CN) dephosphorylating nuclear factor of activated T cells (NFAT), and because Sur1-Trpm4 channels are crucial for regulating Ca(2+) influx, we hypothesized that, in activated microglia, Sur1-Trpm4 channels play a central role in regulating CN/NFAT and downstream target genes such as Nos2. METHODS: We studied microglia in vivo and in primary culture from adult rats, and from wild type, Abcc8-/- and Trpm4-/- mice, and immortalized N9 microglia, following activation of Toll-like receptor 4 (TLR4) by lipopolysaccharide (LPS), using in situ hybridization, immunohistochemistry, co-immunoprecipitation, immunoblot, qPCR, patch clamp electrophysiology, calcium imaging, the Griess assay, and chromatin immunoprecipitation. RESULTS: In microglia in vivo and in vitro, LPS activation of TLR4 led to de novo upregulation of Sur1-Trpm4 channels and CN/NFAT-dependent upregulation of Nos2 mRNA, NOS2 protein, and NO. Pharmacological inhibition of Sur1 (glibenclamide), Trpm4 (9-phenanthrol), or gene silencing of Abcc8 or Trpm4 reduced Nos2 upregulation. Inhibiting Sur1-Trpm4 increased the intracellular calcium concentration ([Ca(2+)]i), as expected, but also decreased NFAT nuclear translocation. The increase in [Ca(2+)]i induced by inhibiting or silencing Sur1-Trpm4 resulted in phosphorylation of Ca(2+)/calmodulin protein kinase II and of CN, consistent with reduced nuclear translocation of NFAT. The regulation of NFAT by Sur1-Trpm4 was confirmed using chromatin immunoprecipitation. CONCLUSIONS: Sur1-Trpm4 constitutes a novel mechanism by which TLR4-activated microglia regulate pro-inflammatory, Ca(2+)-sensitive gene expression, including Nos2.


Subject(s)
Microglia/metabolism , Nitric Oxide Synthase Type II/biosynthesis , Sulfonylurea Receptors/physiology , TRPM Cation Channels/physiology , Toll-Like Receptor 4/metabolism , Transcription, Genetic/physiology , Animals , Cells, Cultured , Diazoxide/pharmacology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Microglia/drug effects , Nitric Oxide Synthase Type II/genetics , Rats , Rats, Wistar , Toll-Like Receptor 4/genetics , Transcription, Genetic/drug effects
11.
Neurosurg Focus ; 41(5): E10, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27798982

ABSTRACT

Hydrocephalus, despite its heterogeneous causes, is ultimately a disease of disordered CSF homeostasis that results in pathological expansion of the cerebral ventricles. Our current understanding of the pathophysiology of hydrocephalus is inadequate but evolving. Over this past century, the majority of hydrocephalus cases has been explained by functional or anatomical obstructions to bulk CSF flow. More recently, hydrodynamic models of hydrocephalus have emphasized the role of abnormal intracranial pulsations in disease pathogenesis. Here, the authors review the molecular mechanisms of CSF secretion by the choroid plexus epithelium, the most efficient and actively secreting epithelium in the human body, and provide experimental and clinical evidence for the role of increased CSF production in hydrocephalus. Although the choroid plexus epithelium might have only an indirect influence on the pathogenesis of many types of pediatric hydrocephalus, the ability to modify CSF secretion with drugs newer than acetazolamide or furosemide would be an invaluable component of future therapies to alleviate permanent shunt dependence. Investigation into the human genetics of developmental hydrocephalus and choroid plexus hyperplasia, and the molecular physiology of the ion channels and transporters responsible for CSF secretion, might yield novel targets that could be exploited for pharmacotherapeutic intervention.


Subject(s)
Cerebrospinal Fluid Leak/diagnosis , Cerebrospinal Fluid Leak/surgery , Choroid Plexus/metabolism , Hydrocephalus/diagnosis , Hydrocephalus/surgery , Cerebral Ventricles/metabolism , Humans
12.
J Neuroinflammation ; 12: 210, 2015 Nov 18.
Article in English | MEDLINE | ID: mdl-26581714

ABSTRACT

BACKGROUND: In experimental autoimmune encephalomyelitis (EAE), deletion of transient receptor potential melastatin 4 (Trpm4) and administration of glibenclamide were found to ameliorate disease progression, prompting speculation that glibenclamide acts by directly inhibiting Trpm4. We hypothesized that in EAE, Trpm4 upregulation is accompanied by upregulation of sulfonylurea receptor 1 (Sur1) to form Sur1-Trpm4 channels, which are highly sensitive to glibenclamide, and that Sur1-Trpm4 channels are required for EAE progression. METHODS: EAE was induced in wild-type (WT) and Abcc8-/- mice using myelin oligodendrocyte glycoprotein 35-55 (MOG35-55). Lumbar spinal cords were examined by immunohistochemistry, immuno-Förster resonance energy transfer (immunoFRET), and co-immunoprecipitation for Sur1-Trpm4. WT/EAE mice were administered with the Sur1 inhibitor, glibenclamide, beginning on post-induction day 10. Mice were evaluated for clinical function, inflammatory cells and cytokines, axonal preservation, and white matter damage. RESULTS: Sur1-Trpm4 channels were upregulated in EAE, predominantly in astrocytes. The clinical course and severity of EAE were significantly ameliorated in glibenclamide-treated WT/EAE and in Abcc8-/-/EAE mice. At 30 days, the lumbar spinal cords of glibenclamide-treated WT/EAE and Abcc8-/-/EAE mice showed significantly fewer invading immune cells, including leukocytes (CD45), T cells (CD3), B cells (CD20) and macrophages/microglia (CD11b), and fewer cells expressing pro-inflammatory cytokines (TNF-α, IFN-γ, IL-17). In both glibenclamide-treated WT/EAE and Abcc8-/-/EAE mice, the reduced inflammatory burden correlated with better preservation of myelin, better preservation of axons, and more numerous mature and precursor oligodendrocytes. CONCLUSIONS: Sur-Trpm4 channels are newly upregulated in EAE and may represent a novel target for disease-modifying therapy in multiple sclerosis.


Subject(s)
Encephalomyelitis, Autoimmune, Experimental/drug therapy , Sulfonylurea Receptors/antagonists & inhibitors , TRPM Cation Channels/antagonists & inhibitors , Animals , Axons/pathology , Female , Gene Silencing , Glyburide/therapeutic use , Hypoglycemic Agents/therapeutic use , Mice , Mice, Inbred C57BL , Mice, Knockout , Myelin Sheath/drug effects , Myelin-Oligodendrocyte Glycoprotein , Neuroprotective Agents/therapeutic use , Peptide Fragments , Spinal Cord/pathology , Sulfonylurea Receptors/genetics
13.
Neurochem Res ; 40(2): 317-28, 2015 Feb.
Article in English | MEDLINE | ID: mdl-24996934

ABSTRACT

Cerebral edema formation stems from disruption of blood brain barrier (BBB) integrity and occurs after injury to the CNS. Due to the restrictive skull, relatively small increases in brain volume can translate into impaired tissue perfusion and brain herniation. In excess, cerebral edema can be gravely harmful. Astrocytes are key participants in cerebral edema by virtue of their relationship with the cerebral vasculature, their unique compliment of solute and water transport proteins, and their general role in brain volume homeostasis. Following the discovery of aquaporins, passive conduits of water flow, aquaporin 4 (AQP4) was identified as the predominant astrocyte water channel. Normally, AQP4 is highly enriched at perivascular endfeet, the outermost layer of the BBB, whereas after injury, AQP4 expression disseminates to the entire astrocytic plasmalemma, a phenomenon termed dysregulation. Arguably, the most important role of AQP4 is to rapidly neutralize osmotic gradients generated by ionic transporters. In pathological conditions, AQP4 is believed to be intimately involved in the formation and clearance of cerebral edema. In this review, we discuss aquaporin function and localization in the BBB during health and injury, and we examine post-injury ionic events that modulate AQP4-dependent edema formation.


Subject(s)
Astrocytes/physiology , Brain Edema/physiopathology , Animals , Aquaporin 4/physiology , Blood-Brain Barrier , Cell Membrane/physiology , Humans
14.
Pediatr Res ; 77(5): 663-73, 2015 May.
Article in English | MEDLINE | ID: mdl-25665055

ABSTRACT

BACKGROUND: Three risk factors are associated with hemorrhagic forms of encephalopathy of prematurity (EP): (i) prematurity, (ii) in utero ischemia (IUI) or perinatal ischemia, and (iii) mechanical ventilation. We hypothesized that IUI would induce an angiogenic response marked by activation of vascular endothelial growth factor (VEGF) and matrix metalloproteinase-9 (MMP-9), the latter degrading vascular basement membrane and increasing vulnerability to raised intravenous pressure during positive pressure mechanical ventilation. METHODS: We studied a rat model of hemorrhagic-EP characterized by periventricular hemorrhages in which a 20-min episode of IUI is induced at E19, pups are born naturally at E21-22, and on P0, are subjected to a 20-min episode of positive pressure mechanical ventilation. Tissues were studied by H&E staining, immunolabeling, immunoblot, and zymography. RESULTS: Mechanical ventilation of rat pups 2-3 d after 20-min IUI caused widespread hemorrhages in periventricular tissues. IUI resulted in upregulation of VEGF and MMP-9. Zymography confirmed significantly elevated gelatinase activity. MMP-9 activation was accompanied by severe loss of MMP-9 substrates, collagen IV and laminin, in microvessels in periventricular areas. CONCLUSION: Our findings are consistent with the hypothesis that positive pressure mechanical ventilation of the newborn in the context of recent prenatal ischemia/hypoxia can predispose to periventricular hemorrhages.


Subject(s)
Hemorrhage/physiopathology , Ischemia/pathology , Neovascularization, Pathologic , Animals , Blood Gas Analysis , Collagen Type IV/chemistry , Disease Models, Animal , Electrolytes , Female , Hemorrhage/pathology , Hypoxia/pathology , Inflammation/pathology , Intracranial Hemorrhages , Laminin/chemistry , Maternal Exposure , Matrix Metalloproteinase 9/metabolism , Pregnancy , Pregnancy, Animal , Rats , Rats, Wistar , Respiration, Artificial , Risk Factors , Time Factors , Vascular Endothelial Growth Factor A/metabolism
15.
Neurocrit Care ; 23(2): 292-304, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26032808

ABSTRACT

Decompressive craniectomy (DC) has been used for many years in the management of patients with elevated intracranial pressure and cerebral edema. Ongoing clinical trials are investigating the clinical and cost effectiveness of DC in trauma and stroke. While DC has demonstrable efficacy in saving life, it is accompanied by a myriad of non-trivial complications that have been inadequately highlighted in prospective clinical trials. Missing from our current understanding is a comprehensive analysis of all potential complications associated with DC. Here, we review the available literature, we tabulate all reported complications, and we calculate their frequency for specific indications. Of over 1500 records initially identified, a final total of 142 eligible records were included in our comprehensive analysis. We identified numerous complications related to DC that have not been systematically reviewed. Complications were of three major types: (1) Hemorrhagic (2) Infectious/Inflammatory, and (3) Disturbances of the CSF compartment. Complications associated with cranioplasty fell under similar major types, with additional complications relating to the bone flap. Overall, one of every ten patients undergoing DC may suffer a complication necessitating additional medical and/or neurosurgical intervention. While DC has received increased attention as a potential therapeutic option in a variety of situations, like any surgical procedure, DC is not without risk. Neurologists and neurosurgeons must be aware of all the potential complications of DC in order to properly advise their patients.


Subject(s)
Brain Injuries/surgery , Decompressive Craniectomy/adverse effects , Postoperative Complications , Stroke/surgery , Humans , Postoperative Complications/etiology
16.
Int J Mol Sci ; 16(3): 4973-84, 2015 Mar 04.
Article in English | MEDLINE | ID: mdl-25749474

ABSTRACT

Ischemic and hemorrhagic strokes are associated with severe functional disability and high mortality. Except for recombinant tissue plasminogen activator, therapies targeting the underlying pathophysiology of central nervous system (CNS) ischemia and hemorrhage are strikingly lacking. Sur1-regulated channels play essential roles in necrotic cell death and cerebral edema following ischemic insults, and in neuroinflammation after hemorrhagic injuries. Inhibiting endothelial, neuronal, astrocytic and oligodendroglial sulfonylurea receptor 1-transient receptor potential melastatin 4 (Sur1-Trpm4) channels and, in some cases, microglial KATP (Sur1-Kir6.2) channels, with glibenclamide is protective in a variety of contexts. Robust preclinical studies have shown that glibenclamide and other sulfonylurea agents reduce infarct volumes, edema and hemorrhagic conversion, and improve outcomes in rodent models of ischemic stroke. Retrospective studies suggest that diabetic patients on sulfonylurea drugs at stroke presentation fare better if they continue on drug. Additional laboratory investigations have implicated Sur1 in the pathophysiology of hemorrhagic CNS insults. In clinically relevant models of subarachnoid hemorrhage, glibenclamide reduces adverse neuroinflammatory and behavioral outcomes. Here, we provide an overview of the preclinical studies of glibenclamide therapy for CNS ischemia and hemorrhage, discuss the available data from clinical investigations, and conclude with promising preclinical results that suggest glibenclamide may be an effective therapeutic option for ischemic and hemorrhagic stroke.


Subject(s)
Glyburide/therapeutic use , Stroke/drug therapy , Animals , Blood-Brain Barrier/metabolism , Humans , Hypoglycemic Agents/therapeutic use , KATP Channels/chemistry , KATP Channels/metabolism , Sulfonylurea Receptors/antagonists & inhibitors , Sulfonylurea Receptors/metabolism
17.
Int J Mol Sci ; 16(3): 5028-46, 2015 Mar 05.
Article in English | MEDLINE | ID: mdl-25751721

ABSTRACT

Neuroinflammation is a well-recognized consequence of subarachnoid hemorrhage (SAH), and may be responsible for important complications of SAH. Signaling by Toll-like receptor 4 (TLR4)-mediated nuclear factor κB (NFκB) in microglia plays a critical role in neuronal damage after SAH. Three molecules derived from erythrocyte breakdown have been postulated to be endogenous TLR4 ligands: methemoglobin (metHgb), heme and hemin. However, poor water solubility of heme and hemin, and lipopolysaccharide (LPS) contamination have confounded our understanding of these molecules as endogenous TLR4 ligands. We used a 5-step process to obtain highly purified LPS-free metHgb, as confirmed by Fourier Transform Ion Cyclotron Resonance mass spectrometry and by the Limulus amebocyte lysate assay. Using this preparation, we show that metHgb is a TLR4 ligand at physiologically relevant concentrations. metHgb caused time- and dose-dependent secretion of the proinflammatory cytokine, tumor necrosis factor α (TNFα), from microglial and macrophage cell lines, with secretion inhibited by siRNA directed against TLR4, by the TLR4-specific inhibitors, Rs-LPS and TAK-242, and by anti-CD14 antibodies. Injection of purified LPS-free metHgb into the rat subarachnoid space induced microglial activation and TNFα upregulation. Together, our findings support the hypothesis that, following SAH, metHgb in the subarachnoid space can promote widespread TLR4-mediated neuroinflammation.


Subject(s)
Methemoglobin/pharmacology , Toll-Like Receptor 4/metabolism , Animals , Cattle , Cell Line , Hippocampus/drug effects , Hippocampus/metabolism , Inflammation/etiology , Ligands , Macrophages/cytology , Macrophages/drug effects , Macrophages/metabolism , Methemoglobin/chemistry , Methemoglobin/isolation & purification , Mice , Microglia/cytology , Microglia/drug effects , Microglia/metabolism , RNA Interference , RNA, Small Interfering/metabolism , Rats , Subarachnoid Hemorrhage/complications , Subarachnoid Hemorrhage/pathology , Sulfonamides/pharmacology , Toll-Like Receptor 4/antagonists & inhibitors , Toll-Like Receptor 4/genetics , Transcription Factor RelA/metabolism , Tumor Necrosis Factor-alpha/metabolism
18.
J Biol Chem ; 288(5): 3655-67, 2013 Feb 01.
Article in English | MEDLINE | ID: mdl-23255597

ABSTRACT

The sulfonylurea receptor 1 (Sur1)-NC(Ca-ATP) channel plays a central role in necrotic cell death in central nervous system (CNS) injury, including ischemic stroke, and traumatic brain and spinal cord injury. Here, we show that Sur1-NC(Ca-ATP) channels are formed by co-assembly of Sur1 and transient receptor potential melastatin 4 (Trpm4). Co-expression of Sur1 and Trpm4 yielded Sur1-Trpm4 heteromers, as shown in experiments with Förster resonance energy transfer (FRET) and co-immunoprecipitation. Co-expression of Sur1 and Trpm4 also yielded functional Sur1-Trpm4 channels with biophysical properties of Trpm4 and pharmacological properties of Sur1. Co-assembly with Sur1 doubled the affinity of Trpm4 for calmodulin and doubled its sensitivity to intracellular calcium. Experiments with FRET and co-immunoprecipitation showed de novo appearance of Sur1-Trpm4 heteromers after spinal cord injury in rats. Our findings depart from the long-held view of an exclusive association between Sur1 and K(ATP) channels and reveal an unexpected molecular partnership with far-ranging implications for CNS injury.


Subject(s)
ATP-Binding Cassette Transporters/metabolism , Potassium Channels, Inwardly Rectifying/metabolism , Receptors, Drug/metabolism , TRPM Cation Channels/metabolism , ATP-Binding Cassette Transporters/antagonists & inhibitors , Animals , COS Cells , Cell Membrane/drug effects , Cell Membrane/metabolism , Chlorocebus aethiops , Diazoxide/pharmacology , Fluorescence Resonance Energy Transfer , Glyburide/pharmacology , Glycosylation/drug effects , HEK293 Cells , Humans , Immunoprecipitation , Mice , Potassium Channels, Inwardly Rectifying/antagonists & inhibitors , Protein Binding/drug effects , Protein Multimerization/drug effects , Rats , Receptors, Drug/antagonists & inhibitors , Recombinant Proteins/metabolism , Spinal Cord Injuries/metabolism , Spinal Cord Injuries/pathology , Sulfonylurea Receptors
19.
J Biol Chem ; 288(51): 36409-17, 2013 Dec 20.
Article in English | MEDLINE | ID: mdl-24214984

ABSTRACT

N-glycosylation is important for the function and regulation of ion channels. We examined the role of N-glycosylation of transient receptor potential melastatin (Trpm) 4b, a membrane glycoprotein that regulates calcium influx. Trpm4b was expressed in vivo in all rat tissues examined. In each tissue, Trpm4b had a different molecular mass, between ∼129 and ∼141 kDa, but all reverted to ∼120 kDa following treatment with peptide:N-glycosidase F, consistent with N-glycosylation being the principal form of post-translational modification of Trpm4b in vivo. In six stable isogenic cell lines that express different levels of Trpm4b, two forms were found, high mannose, core-glycosylated and complex, highly glycosylated (HG), with HG-Trpm4b comprising 85% of the total Trpm4b expressed. For both forms, surface expression was directly proportional to the total Trpm4b expressed. Complex N-glycosylation doubled the percentage of Trpm4b at the surface, compared with high mannose N-glycosylation. Mutation of the single N-glycosylation consensus sequence at Asn-988 (Trpm4b-N988Q), located near the pore-forming loop between transmembrane helices 5 and 6, prevented glycosylation, but did not prevent surface expression, impair formation of functional membrane channels, or alter channel conductance. In transfection experiments, the time courses for appearance of HG-Trpm4b and Trpm4b-N988Q on the surface were similar. In experiments with cycloheximide inhibition of protein synthesis, the time course for disappearance of HG-Trpm4b from the surface was much slower than that for Trpm4b-N988Q. We conclude that N-glycosylation is not required for surface expression or channel function, but that complex N-glycosylation plays a crucial role in stabilizing surface expression of Trpm4b.


Subject(s)
Cell Membrane/metabolism , TRPM Cation Channels/metabolism , Amino Acid Sequence , Animals , COS Cells , Calcium Signaling , Chlorocebus aethiops , Glycosylation , Mannose/chemistry , Mice , Molecular Sequence Data , Mutation, Missense , Protein Stability , Protein Structure, Tertiary , Protein Transport , Rats , TRPM Cation Channels/chemistry , TRPM Cation Channels/genetics
SELECTION OF CITATIONS
SEARCH DETAIL