Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Hum Brain Mapp ; 45(11): e26754, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39046031

ABSTRACT

Only a small number of studies have assessed structural differences between the two hemispheres during childhood and adolescence. However, the existing findings lack consistency or are restricted to a particular brain region, a specific brain feature, or a relatively narrow age range. Here, we investigated associations between brain asymmetry and age as well as sex in one of the largest pediatric samples to date (n = 4265), aged 1-18 years, scanned at 69 sites participating in the ENIGMA (Enhancing NeuroImaging Genetics through Meta-Analysis) consortium. Our study revealed that significant brain asymmetries already exist in childhood, but their magnitude and direction depend on the brain region examined and the morphometric measurement used (cortical volume or thickness, regional surface area, or subcortical volume). With respect to effects of age, some asymmetries became weaker over time while others became stronger; sometimes they even reversed direction. With respect to sex differences, the total number of regions exhibiting significant asymmetries was larger in females than in males, while the total number of measurements indicating significant asymmetries was larger in males (as we obtained more than one measurement per cortical region). The magnitude of the significant asymmetries was also greater in males. However, effect sizes for both age effects and sex differences were small. Taken together, these findings suggest that cerebral asymmetries are an inherent organizational pattern of the brain that manifests early in life. Overall, brain asymmetry appears to be relatively stable throughout childhood and adolescence, with some differential effects in males and females.


Subject(s)
Brain , Magnetic Resonance Imaging , Sex Characteristics , Humans , Adolescent , Male , Child , Female , Child, Preschool , Infant , Brain/diagnostic imaging , Brain/growth & development , Brain/anatomy & histology , Age Factors , Child Development/physiology , Functional Laterality/physiology , Adolescent Development/physiology
2.
Brain Topogr ; 26(3): 442-57, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23160910

ABSTRACT

While several studies have investigated interactions between the electroencephalography (EEG) and functional magnetic resonance imaging BOLD signal fluctuations, less is known about the associations between EEG oscillations and baseline brain haemodynamics, and few studies have examined the link between EEG power outside the alpha band and baseline perfusion. Here we compare whole-brain arterial spin labelling perfusion MRI and EEG in a group of healthy adults (n = 16, ten females, median age: 27 years, range 21-48) during an eyes closed rest condition. Correlations emerged between perfusion and global average EEG power in low (delta: 2-4 Hz and theta: 4-7 Hz), middle (alpha: 8-13 Hz), and high (beta: 13-30 Hz and gamma: 30-45 Hz) frequency bands in both cortical and sub-cortical regions. The correlations were predominately positive in middle and high-frequency bands, and negative in delta. In addition, central alpha frequency positively correlated with perfusion in a network of brain regions associated with the modulation of attention and preparedness for external input, and central theta frequency correlated negatively with a widespread network of cortical regions. These results indicate that the coupling between average EEG power/frequency and local cerebral blood flow varies in a frequency specific manner. Our results are consistent with longstanding concepts that decreasing EEG frequencies which in general map onto decreasing levels of activation.


Subject(s)
Brain Mapping , Brain Waves/physiology , Cerebral Cortex/physiology , Perfusion Imaging , Rest/physiology , Adult , Electroencephalography , Female , Functional Laterality , Humans , Image Processing, Computer-Assisted , Male , Middle Aged , Young Adult
3.
Transl Psychiatry ; 5: e589, 2015 Jun 23.
Article in English | MEDLINE | ID: mdl-26101852

ABSTRACT

While the neurobiological basis and developmental course of attention-deficit/hyperactivity disorder (ADHD) have not yet been fully established, an imbalance between inhibitory/excitatory neurotransmitters is thought to have an important role in the pathophysiology of ADHD. This study examined the changes in cerebral levels of GABA+, glutamate and glutamine in children and adults with ADHD using edited magnetic resonance spectroscopy. We studied 89 participants (16 children with ADHD, 19 control children, 16 adults with ADHD and 38 control adults) in a subcortical voxel (children and adults) and a frontal voxel (adults only). ADHD adults showed increased GABA+ levels relative to controls (P = 0.048), while ADHD children showed no difference in GABA+ in the subcortical voxel (P > 0.1), resulting in a significant age by disorder interaction (P = 0.026). Co-varying for age in an analysis of covariance model resulted in a nonsignificant age by disorder interaction (P = 0.06). Glutamine levels were increased in children with ADHD (P = 0.041), but there was no significant difference in adults (P > 0.1). Glutamate showed no difference between controls and ADHD patients but demonstrated a strong effect of age across both groups (P < 0.001). In conclusion, patients with ADHD show altered levels of GABA+ in a subcortical voxel which change with development. Further, we found increased glutamine levels in children with ADHD, but this difference normalized in adults. These observed imbalances in neurotransmitter levels are associated with ADHD symptomatology and lend new insight in the developmental trajectory and pathophysiology of ADHD.


Subject(s)
Adolescent Development , Attention Deficit Disorder with Hyperactivity/metabolism , Brain/metabolism , Child Development , Glutamic Acid/metabolism , Glutamine/metabolism , gamma-Aminobutyric Acid/metabolism , Adolescent , Adult , Age Factors , Case-Control Studies , Child , Female , Frontal Lobe/metabolism , Gray Matter/metabolism , Humans , Magnetic Resonance Spectroscopy , Male , Middle Aged , Young Adult
4.
Clin Neurophysiol ; 125(8): 1626-38, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24582383

ABSTRACT

OBJECTIVE: Objective biomarkers for attention-deficit/hyperactivity disorder (ADHD) could improve diagnostics or treatment monitoring of this psychiatric disorder. The resting electroencephalogram (EEG) provides non-invasive spectral markers of brain function and development. Their accuracy as ADHD markers is increasingly questioned but may improve with pattern classification. METHODS: This study provides an integrated analysis of ADHD and developmental effects in children and adults using regression analysis and support vector machine classification of spectral resting (eyes-closed) EEG biomarkers in order to clarify their diagnostic value. RESULTS: ADHD effects on EEG strongly depend on age and frequency. We observed typical non-linear developmental decreases in delta and theta power for both ADHD and control groups. However, for ADHD adults we found a slowing in alpha frequency combined with a higher power in alpha-1 (8-10Hz) and beta (13-30Hz). Support vector machine classification of ADHD adults versus controls yielded a notable cross validated sensitivity of 67% and specificity of 83% using power and central frequency from all frequency bands. ADHD children were not classified convincingly with these markers. CONCLUSIONS: Resting state electrophysiology is altered in ADHD, and these electrophysiological impairments persist into adulthood. SIGNIFICANCE: Spectral biomarkers may have both diagnostic and prognostic value.


Subject(s)
Aging/physiology , Attention Deficit Disorder with Hyperactivity/diagnosis , Attention Deficit Disorder with Hyperactivity/physiopathology , Electroencephalography , Adolescent , Adult , Aged , Attention , Child , Female , Humans , Male , Middle Aged , Prognosis , Regression Analysis , Rest/physiology , Sensitivity and Specificity , Support Vector Machine , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL