Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Opt Lett ; 42(19): 3860-3863, 2017 Oct 01.
Article in English | MEDLINE | ID: mdl-28957145

ABSTRACT

We present, to the best of our knowledge, the first known detailed analysis and fair comparison of complexity of a 56 Gb/s multi-band carrierless amplitude and phase (CAP) and discrete multi-tone (DMT) over 80 km dispersion compensation fiber-free single-mode fiber links based on intensity modulation and direct detection for data center interconnects. We show that the matched finite impulse response filters and inverse fast Fourier transform (IFFT)/FFT take the majority of the complexity of the multi-band CAP and DMT, respectively. The choice of the multi-band CAP sub-band count and the DMT IFFT/FFT size makes significant impact on the system complexity or performance, and trade-off must be considered.

2.
Opt Express ; 23(22): 28271-81, 2015 Nov 02.
Article in English | MEDLINE | ID: mdl-26561098

ABSTRACT

Extensive numerical investigations are undertaken to analyze and compare, for the first time, the performance, techno-economy, and power consumption of three-level electrical Duobinary, optical Duobinary, and PAM-4 modulation formats as candidates for high-speed next-generation PONs supporting downstream 40 Gb/s per wavelength signal transmission over standard SMFs in C-band. Optimization of transceiver bandwidths are undertaken to show the feasibility of utilizing low-cost and band-limited components to support next-generation PON transmissions. The effect of electro-absorption modulator chirp is examined for electrical Duobinary and PAM-4. Electrical Duobinary and optical Duobinary are power-efficient schemes for smaller transmission distances of 10 km SMFs and optical Duobinary offers the best receiver sensitivity albeit with a relatively high transceiver cost. PAM-4 shows the best power budget and cost-efficiency for larger distances of around 20 km, although it consumes more power. Electrical Duobinary shows the best trade-off between performance, cost and power dissipation.

3.
Opt Express ; 23(5): 5888-97, 2015 Mar 09.
Article in English | MEDLINE | ID: mdl-25836815

ABSTRACT

We propose a novel architecture for all-optical add-drop multiplexing of OFDM signals. Sub-channel extraction is achieved by means of waveform replication and coherent subtraction from the OFDM super-channel. Numerical simulations have been carried out to benchmark the performance of the architecture against critical design parameters.

4.
Opt Express ; 22(9): 10975-86, 2014 May 05.
Article in English | MEDLINE | ID: mdl-24921795

ABSTRACT

A number of critical issues for dual-polarization single- and multi-band optical orthogonal-frequency division multiplexing (DP-SB/MB-OFDM) signals are analyzed in dispersion compensation fiber (DCF)-free long-haul links. For the first time, different DP crosstalk removal techniques are compared, the maximum transmission-reach is investigated, and the impact of subcarrier number and high-level modulation formats are explored thoroughly. It is shown, for a bit-error-rate (BER) of 10(-3), 2000 km of quaternary phase-shift keying (QPSK) DP-MB-OFDM transmission is feasible. At high launched optical powers (LOP), maximum-likelihood decoding can extend the LOP of 40 Gb/s QPSK DP-SB-OFDM at 2000 km by 1.5 dB compared to zero-forcing. For a 100 Gb/s DP-MB-OFDM system, a high number of subcarriers contribute to improved BER but at the cost of digital signal processing computational complexity, whilst by adapting the cyclic prefix length the BER can be improved for a low number of subcarriers. In addition, when 16-quadrature amplitude modulation (16QAM) is employed the digital-to-analogue/analogue-to-digital converter (DAC/ADC) bandwidth is relaxed with a degraded BER; while the 'circular' 8QAM is slightly superior to its 'rectangular' form. Finally, the transmission of wavelength-division multiplexing DP-MB-OFDM and single-carrier DP-QPSK is experimentally compared for up to 500 Gb/s showing great potential and similar performance at 1000 km DCF-free G.652 line.

5.
Opt Express ; 21(14): 16982-91, 2013 Jul 15.
Article in English | MEDLINE | ID: mdl-23938547

ABSTRACT

The transmission performance of coherent dual-polarization multi-band OFDM (DP-MB-OFDM) and QPSK (DP-QPSK) are experimentally compared for 100 Gb/s long-haul transport over legacy infrastructure combining G.652 fiber and 10 Gb/s WDM system. It is shown that DP-MB-OFDM and DP-QPSK have nearly the same performance at 100 Gb/s after transmission over a 10 × 100-km fiber line. Furthermore, the origin of performance degradations and limitations of the DP-MB-OFDM is explored numerically, as well as the impact of transmission distance and sub-band spacing.


Subject(s)
Computer Communication Networks/instrumentation , Fiber Optic Technology/instrumentation , Refractometry/instrumentation , Signal Processing, Computer-Assisted/instrumentation , Telecommunications/instrumentation , Equipment Design , Equipment Failure Analysis , Microwaves
6.
Opt Express ; 18(6): 5541-55, 2010 Mar 15.
Article in English | MEDLINE | ID: mdl-20389570

ABSTRACT

The fastest ever 11.25Gb/s real-time FPGA-based optical orthogonal frequency division multiplexing (OOFDM) transceivers utilizing 64-QAM encoding/decoding and significantly improved variable power loading are experimentally demonstrated, for the first time, incorporating advanced functionalities of on-line performance monitoring, live system parameter optimization and channel estimation. Real-time end-to-end transmission of an 11.25Gb/s 64-QAM-encoded OOFDM signal with a high electrical spectral efficiency of 5.625bit/s/Hz over 25km of standard and MetroCor single-mode fibres is successfully achieved with respective power penalties of 0.3dB and -0.2dB at a BER of 1.0 x 10(-3) in a directly modulated DFB laser-based intensity modulation and direct detection system without in-line optical amplification and chromatic dispersion compensation. The impacts of variable power loading as well as electrical and optical components on the transmission performance of the demonstrated transceivers are experimentally explored in detail. In addition, numerical simulations also show that variable power loading is an extremely effective means of escalating system performance to its maximum potential.


Subject(s)
Fiber Optic Technology/instrumentation , Optical Devices , Signal Processing, Computer-Assisted/instrumentation , Telecommunications/instrumentation , Equipment Design , Equipment Failure Analysis , Microwaves
7.
Opt Express ; 16(13): 9480-94, 2008 Jun 23.
Article in English | MEDLINE | ID: mdl-18575513

ABSTRACT

The impact of Adaptive Cyclic Prefix (ACP) on the transmission performance of Adaptively Modulated Optical OFDM (AMOOFDM) is explored thoroughly in directly modulated DFB laser-based, IMDD links involving Multimode Fibres (MMFs)/Single-Mode Fibres (SMFs). Three ACP mechanisms are identified, each of which can, depending upon the link properties, affect significantly the AMOOFDM transmission performance. In comparison with AMOOFDM having a fixed cyclic prefix duration of 25%, AMOOFDM with ACP can not only improve the transmission capacity by a factor of >2 (>1.3) for >1000 m MMFs (<80 km SMFs) with 1 dB link loss margin enhancement, but also relax considerably the requirement on the DFB bandwidth.


Subject(s)
Algorithms , Fiber Optic Technology/instrumentation , Lasers , Models, Theoretical , Signal Processing, Computer-Assisted/instrumentation , Telecommunications/instrumentation , Computer Simulation , Equipment Design , Equipment Failure Analysis , Light , Scattering, Radiation
SELECTION OF CITATIONS
SEARCH DETAIL