Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Database
Language
Publication year range
1.
PLoS Genet ; 19(9): e1010893, 2023 09.
Article in English | MEDLINE | ID: mdl-37733679

ABSTRACT

Brains are highly metabolically active organs, consuming 20% of a person's energy at resting state. A decline in glucose metabolism is a common feature across a number of neurodegenerative diseases. Another common feature is the progressive accumulation of insoluble protein deposits, it's unclear if the two are linked. Glucose metabolism in the brain is highly coupled between neurons and glia, with glucose taken up by glia and metabolised to lactate, which is then shuttled via transporters to neurons, where it is converted back to pyruvate and fed into the TCA cycle for ATP production. Monocarboxylates are also involved in signalling, and play broad ranging roles in brain homeostasis and metabolic reprogramming. However, the role of monocarboxylates in dementia has not been tested. Here, we find that increasing pyruvate import in Drosophila neurons by over-expression of the transporter bumpel, leads to a rescue of lifespan and behavioural phenotypes in fly models of both frontotemporal dementia and Alzheimer's disease. The rescue is linked to a clearance of late stage autolysosomes, leading to degradation of toxic peptides associated with disease. We propose upregulation of pyruvate import into neurons as potentially a broad-scope therapeutic approach to increase neuronal autophagy, which could be beneficial for multiple dementias.


Subject(s)
Alzheimer Disease , Frontotemporal Dementia , Humans , Animals , Frontotemporal Dementia/genetics , Alzheimer Disease/genetics , Neuroglia , Pyruvic Acid , Drosophila , Glucose
2.
bioRxiv ; 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-39005258

ABSTRACT

Lipid changes in the brain have been implicated in many neurodegenerative diseases including Alzheimer's Disease (AD), Parkinson's disease and Amyotrophic Lateral Sclerosis. To facilitate comparative lipidomic research across brain-diseases we established a data commons named the Neurolipid Atlas, that we have pre-populated with novel human, mouse and isogenic induced pluripotent stem cell (iPSC)-derived lipidomics data for different brain diseases. We show that iPSC-derived neurons, microglia and astrocytes display distinct lipid profiles that recapitulate in vivo lipotypes. Leveraging multiple datasets, we show that the AD risk gene ApoE4 drives cholesterol ester (CE) accumulation in human astrocytes recapitulating CE accumulation measured in the human AD brain. Multi-omic interrogation of iPSC-derived astrocytes revealed that cholesterol plays a major role in astrocyte interferon-dependent pathways such as the immunoproteasome and major histocompatibility complex (MHC) class I antigen presentation. We show that through enhanced cholesterol esterification ApoE4 suppresses immune activation of astrocytes. Our novel data commons, available at neurolipidatlas.com, provides a user-friendly tool and knowledge base for a better understanding of lipid dyshomeostasis in neurodegenerative diseases.

3.
Nat Neurosci ; 27(4): 643-655, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38424324

ABSTRACT

Dipeptide repeat proteins are a major pathogenic feature of C9orf72 amyotrophic lateral sclerosis (C9ALS)/frontotemporal dementia (FTD) pathology, but their physiological impact has yet to be fully determined. Here we generated C9orf72 dipeptide repeat knock-in mouse models characterized by expression of 400 codon-optimized polyGR or polyPR repeats, and heterozygous C9orf72 reduction. (GR)400 and (PR)400 knock-in mice recapitulate key features of C9ALS/FTD, including cortical neuronal hyperexcitability, age-dependent spinal motor neuron loss and progressive motor dysfunction. Quantitative proteomics revealed an increase in extracellular matrix (ECM) proteins in (GR)400 and (PR)400 spinal cord, with the collagen COL6A1 the most increased protein. TGF-ß1 was one of the top predicted regulators of this ECM signature and polyGR expression in human induced pluripotent stem cell neurons was sufficient to induce TGF-ß1 followed by COL6A1. Knockdown of TGF-ß1 or COL6A1 orthologues in polyGR model Drosophila exacerbated neurodegeneration, while expression of TGF-ß1 or COL6A1 in induced pluripotent stem cell-derived motor neurons of patients with C9ALS/FTD protected against glutamate-induced cell death. Altogether, our findings reveal a neuroprotective and conserved ECM signature in C9ALS/FTD.


Subject(s)
Amyotrophic Lateral Sclerosis , Frontotemporal Dementia , Induced Pluripotent Stem Cells , Animals , Humans , Mice , Frontotemporal Dementia/pathology , Amyotrophic Lateral Sclerosis/metabolism , Transforming Growth Factor beta1 , C9orf72 Protein/genetics , C9orf72 Protein/metabolism , Induced Pluripotent Stem Cells/metabolism , Motor Neurons/metabolism , Drosophila , Extracellular Matrix/metabolism , Dipeptides/metabolism , DNA Repeat Expansion/genetics
4.
Life Sci Alliance ; 6(9)2023 09.
Article in English | MEDLINE | ID: mdl-37308278

ABSTRACT

Hexanucleotide repeat expansions in the C9orf72 gene are the most prevalent genetic cause of amyotrophic lateral sclerosis and frontotemporal dementia. Transcripts of the expansions are translated into toxic dipeptide repeat (DPR) proteins. Most preclinical studies in cell and animal models have used protein-tagged polyDPR constructs to investigate DPR toxicity but the effects of tags on DPR toxicity have not been systematically explored. Here, we used Drosophila to assess the influence of protein tags on DPR toxicity. Tagging of 36 but not 100 arginine-rich DPRs with mCherry increased toxicity, whereas adding mCherry or GFP to GA100 completely abolished toxicity. FLAG tagging also reduced GA100 toxicity but less than the longer fluorescent tags. Expression of untagged but not GFP- or mCherry-tagged GA100 caused DNA damage and increased p62 levels. Fluorescent tags also affected GA100 stability and degradation. In summary, protein tags affect DPR toxicity in a tag- and DPR-dependent manner, and GA toxicity might be underestimated in studies using tagged GA proteins. Thus, including untagged DPRs as controls is important when assessing DPR toxicity in preclinical models.


Subject(s)
Amyotrophic Lateral Sclerosis , Skin Neoplasms , Animals , Dipeptides , C9orf72 Protein , Peptides , Genes, Regulator , Drosophila
SELECTION OF CITATIONS
SEARCH DETAIL