Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Proc Biol Sci ; 286(1902): 20190345, 2019 05 15.
Article in English | MEDLINE | ID: mdl-31064305

ABSTRACT

Parent sex ratio allocation has consequences for individual fitness, population dynamics, and conservation. Theory predicts that parents should adjust offspring sex ratio when the fitness returns of producing male or female offspring varies. Previous studies have assumed that only mothers are capable of biasing offspring sex ratios, but have neglected fathers, given the expectation of an equal proportion of X- and Y-chromosome-bearing (CBS) sperm in ejaculates due to sex chromosome segregation at meiosis. This assumption has been recently refuted and both paternal fertility and paternal genetic quality have been shown to bias sex ratios. Here, we simultaneously test the relative contribution of paternal, maternal, and individual genetic quality, as measured by inbreeding, on the probability of being born a son or a daughter, using pedigree and lifelong offspring sex ratio data for the eastern bongo ( Tragelaphus eurycerus isaaci). Our models showed first, that surprisingly, as individual inbreeding decreases the probability of being born male increases, second, that paternal genetic effects on sex ratio were stronger than maternal genetic effects (which were absent). Furthermore, paternal effects were opposite in sign to those predicted; father inbreeding increases the probability of having sons. Previous paternal effects have been interpreted as adaptive due to sex-specific inbreeding depression for reproductive traits. We argue that in the eastern bongo, the opposite sign of the paternal effect on sex ratios results from a reversed sex-specific inbreeding depression pattern (present for female but not male reproductive traits). We anticipate that this research will help stimulate research on evolutionary constraints to sex ratios. Finally, the results open a new avenue of research to predict sex ratio allocation in an applied conservation context. Future models of sex ratio allocation should also include the predicted inbreeding level of the offspring and paternal inbreeding levels.


Subject(s)
Antelopes/genetics , Paternal Inheritance , Reproduction/genetics , Sex Ratio , Animals , Female , Inbreeding , Male , Models, Biological
2.
Science ; 379(6634): eadd2889, 2023 02 24.
Article in English | MEDLINE | ID: mdl-36821678

ABSTRACT

Extinct in the Wild (EW) species are placed at the highest risk of extinction under the International Union for Conservation of Nature Red List, but the extent and variation in this risk have never been evaluated. Harnessing global databases of ex situ animal and plant holdings, we report on the perilous state of EW species. Most EW animal species-already compromised by their small number of founders-are maintained at population sizes far below the thresholds necessary to ensure demographic security. Most EW plant species depend on live propagation by a small number of botanic gardens, with a minority secured at seed bank institutions. Both extinctions and recoveries are possible fates for EW species. We urgently call for international effort to enable the latter.


Subject(s)
Endangered Species , Extinction, Biological , Gardens , Seed Bank , Animals , Plants , Population Dynamics
3.
PLoS One ; 13(1): e0191770, 2018.
Article in English | MEDLINE | ID: mdl-29370251

ABSTRACT

The International Union for the Conservation of Nature (IUCN) Red List classifies species according to their risk of extinction, informing local to global conservation decisions. Here we look to advance the estimation of generation length, which is used as a time-scalar in the Red List as a way of accounting for differences in species' life-histories. We calculated or predicted generation length for 86 species of antelope following the Rspan approach. We also tested the importance of both allometry (body-mass) and phylogeny (phylogenetic eigenvectors) as predictors of generation length within a Phylogenetic Eigenvector Map (PEM) framework. We then evaluated the predictive power of this PEM and two binning approaches, following a leave-one-out cross-validation routine. We showed that captive and wild longevity data are nonequivalent and that both body-mass and phylogeny are important predictors for generation length (body-mass explained 64% and phylogeny 36% of the partitioned explained variance). Plus, both the PEM, and the binning approach that included both taxonomic rank and body-mass, had good predictive power and therefore are suitable for extrapolating generation length to missing-data species. Therefore, based on our findings, we advise separating captive and wild data when estimating generation length, and considering the implications of wild and captive data more widely in life-history analyses. We also recommend that body-mass and phylogeny should be used in combination, preferably under a PEM framework (as it was less reliant on available reference species and more explicitly accounts for phylogenetic relatedness) or a binning approach if a PEM is not feasible, to extrapolate generation length to missing-data species. Overall, we provide a transparent, consistent and transferable workflow for improving the use of the Rspan method to calculate generation length for the IUCN Red List.


Subject(s)
Conservation of Natural Resources , Animals , Antelopes/physiology , Models, Theoretical , Phylogeny , Reproduction
4.
PLoS One ; 11(12): e0166912, 2016.
Article in English | MEDLINE | ID: mdl-27935999

ABSTRACT

With the number of threatened species increasing globally, conservation breeding is vitally important now more than ever. However, no previous peer-reviewed study has attempted to determine how the varying conditions across zoos have influenced breeding by an extinct-in-the-wild species. We therefore use questionnaires and studbook data to evaluate the influence of husbandry practices and enclosure design on scimitar-horned oryx (Oryx dammah) breeding success, at the herd level. Regression models were used to identify the variables that best predicted breeding success among 29 zoos across a five-year period. Calf survival decreased with herd age and the use of soft substrates in hardstand areas (yard area usually adjacent to the indoor housing), explaining 30.7% of overall variation. Calf survival also decreased where herds were small and where food provisions were not raised (and hence likely incited competition), although these were less influential. Likewise, birth rate decreased with soft substrates in hardstand areas and unraised food provisions, although these were less influential than for calf survival. Birth rate increased with year-round male presence, yet this decreased calf survival. Compared to previous studies, the number of enclosure/husbandry influences on breeding were relatively few. Nevertheless, these few enclosure/husbandry influences explained over one third of the variation in calf survival. Our data therefore suggest some potential improvements and hence that extinct-in-the-wild species stand a greater chance of survival with empirical design of zoo enclosures and husbandry methods.


Subject(s)
Antelopes/physiology , Conservation of Natural Resources/methods , Endangered Species , Extinction, Biological , Age Factors , Animal Husbandry/methods , Animal Husbandry/statistics & numerical data , Animals , Animals, Zoo , Breeding , Conservation of Natural Resources/statistics & numerical data , Female , Housing, Animal/standards , Housing, Animal/statistics & numerical data , Male , Population Density , Regression Analysis , Reproduction/physiology , Surveys and Questionnaires
SELECTION OF CITATIONS
SEARCH DETAIL