Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Biomed Mater ; 19(4)2024 May 13.
Article in English | MEDLINE | ID: mdl-38688293

ABSTRACT

Collagen type I is a material widely used for 3D cell culture and tissue engineering. Different architectures, such as gels, sponges, membranes, and nanofibers, can be fabricated with it. In collagen hydrogels, the formation of fibrils and fibers depends on various parameters, such as the source of collagen, pH, temperature, concentration, age, etc. In this work, we study the fibrillogenesis process in collagen type I hydrogels with different types of microbeads embedded, using optical techniques such as turbidity assay and confocal reflectance microscopy. We observe that microbeads embedded in the collagen matrix hydrogels modify the fibrillogenesis. Our results show that carboxylated fluorescent microbeads accelerate 3.6 times the gelation, while silica microbeads slow down the formation of collagen fibrils by a factor of 1.9, both compared to pure collagen hydrogels. Our observations suggest that carboxylate microbeads act as nucleation sites and the early collagen fibrils bind to the microbeads.


Subject(s)
Collagen Type I , Hydrogels , Microspheres , Hydrogels/chemistry , Collagen Type I/chemistry , Animals , Collagen/chemistry , Tissue Engineering/methods , Hydrogen-Ion Concentration , Biocompatible Materials/chemistry , Silicon Dioxide/chemistry , Microscopy, Confocal , Temperature , Carboxylic Acids/chemistry , Materials Testing
2.
Pharmaceutics ; 14(9)2022 Sep 02.
Article in English | MEDLINE | ID: mdl-36145602

ABSTRACT

Herein, we report the synthesis of Au nanoparticles (AuNPs) in chitosan (CTS) solution by chemically reducing HAuCl4. CTS was further functionalized with glycidyl methacrylate (chitosan-g-glycidyl methacrylate/AuNP, CTS-g-GMA/AuNP) to improve the mechanical properties for cellular regeneration requirements of CTS-g-GMA/AuNP. Our nanocomposites promote excellent cellular viability and have a positive effect on cytokine regulation in the inflammatory and anti-inflammatory response of skin cells. After 40 days of nanocomposite exposure to a skin wound, we showed that our films have a greater skin wound healing capacity than a commercial film (TheraForm®), and the presence of the collagen allows better cosmetic ave aspects in skin regeneration in comparison with a nanocomposite with an absence of this protein. Electrical percolation phenomena in such nanocomposites were used as guiding tools for the best nanocomposite performance. Our results suggest that chitosan-based Au nanocomposites show great potential for skin wound repair.

3.
J Biomater Appl ; 33(10): 1314-1326, 2019 05.
Article in English | MEDLINE | ID: mdl-30880564

ABSTRACT

Biomaterials are often used in orthopedic surgery like cavity fillings. However, related complications often require long-term systemic antibiotics, device removal, and extended rehabilitation. Hydroxyapatite/silver (HA/Ag) composites have been proposed as implantation biomaterials owing to the osteogenic properties of hydroxyapatite and to the antimicrobial efficiency of silver. Nevertheless, higher silver concentrations induce cytotoxic effects. The aim of this study was to synthesize and characterize HA/Ag nanocomposites that will allow us to use lower concentrations of silver nanoparticles with better antimicrobial efficiency and anti-inflammatory properties. The characterization of HA/Ag was performed by scanning electron microscopy, energy dispersive spectroscopy, X-ray diffraction, Fourier-transform infrared spectra, X-ray photoelectron spectroscopy, and laser diffraction. Bioactivity was evaluated under a simulated body fluid. The viability of osteoblast like-cells (MG-63) was determined by MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide) and the antimicrobial activity was evaluated by the standard McFarland method. The detection of nitric oxide was measured by a colorimetric assay and the inflammatory cytokines by flow cytometry. We obtained particulate composites of calcium phosphates identified as hydroxyapatite and silver nanoparticles. The bioactivity of the HA/Ag nanocomposites on SFB was confirmed by apatite formations. The viability of MG-63 cells was not affected. We also found antimicrobial activity against Escherichia coli, Staphylococcus aureus, and Candida albicans owing to the presence of silver nanoparticles at non-cytotoxic concentrations. HA/Ag reduced the release of nitric oxide and decreased the secretion of IL-1 and TNF-α in cells stimulated with Lipopolysaccharide (LPS). In conclusion, the inflammatory and antimicrobial capacity of the HA/Ag nanocomposites, as well as its bioactivity and low cytotoxicity make it a candidate as an implantation biomaterial for bone tissues engineering and clinical practices in orthopedic, oral and maxillofacial surgery.


Subject(s)
Anti-Infective Agents/pharmacology , Anti-Inflammatory Agents/pharmacology , Biocompatible Materials/pharmacology , Durapatite/pharmacology , Nanocomposites , Silver/pharmacology , Anti-Infective Agents/chemistry , Anti-Inflammatory Agents/chemistry , Bacterial Infections/prevention & control , Biocompatible Materials/chemistry , Bone Regeneration , Candida albicans/drug effects , Candidiasis/prevention & control , Cell Line , Durapatite/chemistry , Escherichia coli/drug effects , Humans , Nanocomposites/chemistry , Nanocomposites/ultrastructure , Silver/chemistry , Staphylococcus aureus/drug effects
4.
Materials (Basel) ; 11(3)2018 Feb 25.
Article in English | MEDLINE | ID: mdl-29495348

ABSTRACT

The physicochemical properties and biological behavior of sintered-bovine-derived hydroxyapatite (BHAp) are here reported and compared to commercial synthetic-HAp (CHAp). Dense ceramics were sintered for 2 h and 4 h at 1200 °C to investigate their microstructure-structure-in-vitro behavior relationship for both HAp ceramics. Densification was directly proportional to sintering time, showing a grain coarsening behavior with a greater effect on BHAp. Lattice parameters, crystallite size, cell volume and Ca/P ratio were determined by Rietveld refinement of X-ray diffraction (XRD) patterns using GSAS®. Ionic substitutions (Na⁺, Mg2+, CO32-) related to BHAp structure were associated with their position changes in the vibrational modes and correlated with the structural parameters obtained from the XRD analysis. Variations in the structural parameters and surface morphology were also evaluated after different soaking periods in simulated body fluid, which is associated with the formation of bone-like apatite layer and thus bioactivity. Mitochondrial activity (MTS) and lactate dehydrogenase (LDH) assays showed that the material released by the ceramics does not induce toxicity after exposure in human fetal osteoblastic (hFOB) cells. Furthermore, no statistically significant differences were found between the HAp obtained from different sources. These results show that BHAp can be used with no restrictions for the same biomedical applications as CHAp.

5.
Rev Sci Instrum ; 82(12): 125105, 2011 Dec.
Article in English | MEDLINE | ID: mdl-22225247

ABSTRACT

Bones are the support of the body. They are composed of many inorganic compounds and other organic materials that all together can be used to determine the mineral density of the bones. The bone mineral density is a measure index that is widely used as an indicator of the health of the bone. A typical manner to evaluate the quality of the bone is a densitometry study; a dual x-ray absorptiometry system based study that has been widely used to assess the mineral density of some animals' bones. However, despite the success stories of utilizing these systems in many different applications, it is a very expensive method that requires frequent calibration processes to work properly. Moreover, its usage in small species applications (e.g., rodents) has not been quite demonstrated yet. Following this argument, it is suggested that there is a need for an instrument that would perform such a task in a more reliable and economical manner. Therefore, in this paper we explore the possibility to develop a new, affordable, and reliable single x-ray absorptiometry system. The method consists of utilizing a single x-ray source, an x-ray image sensor, and a computer platform that all together, as a whole, will allow us to calculate the mineral density of the bone. Utilizing an x-ray transmission theory modified through a version of the Lambert-Beer law equation, a law that expresses the relationship among the energy absorbed, the thickness, and the absorption coefficient of the sample at the x-rays wavelength to calculate the mineral density of the bone can be advantageous. Having determined the parameter equation that defines the ratio of the pixels in radiographies and the bone mineral density [measured in mass per unit of area (g/cm(2))], we demonstrated the utility of our novel methodology by calculating the mineral density of Wistar rats' femur bones.


Subject(s)
Absorptiometry, Photon/instrumentation , Bone Density , Animals , Cattle , Female , Femur/diagnostic imaging , Femur/physiology , Radiography , Rats , Rats, Wistar , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL