Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 45
Filter
1.
EMBO Rep ; 25(4): 1835-1858, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38429578

ABSTRACT

Cancer cachexia is a tumour-induced wasting syndrome, characterised by extreme loss of skeletal muscle. Defective mitochondria can contribute to muscle wasting; however, the underlying mechanisms remain unclear. Using a Drosophila larval model of cancer cachexia, we observed enlarged and dysfunctional muscle mitochondria. Morphological changes were accompanied by upregulation of beta-oxidation proteins and depletion of muscle glycogen and lipid stores. Muscle lipid stores were also decreased in Colon-26 adenocarcinoma mouse muscle samples, and expression of the beta-oxidation gene CPT1A was negatively associated with muscle quality in cachectic patients. Mechanistically, mitochondrial defects result from reduced muscle insulin signalling, downstream of tumour-secreted insulin growth factor binding protein (IGFBP) homologue ImpL2. Strikingly, muscle-specific inhibition of Forkhead box O (FOXO), mitochondrial fusion, or beta-oxidation in tumour-bearing animals preserved muscle integrity. Finally, dietary supplementation with nicotinamide or lipids, improved muscle health in tumour-bearing animals. Overall, our work demonstrates that muscle FOXO, mitochondria dynamics/beta-oxidation and lipid utilisation are key regulators of muscle wasting in cancer cachexia.


Subject(s)
Colonic Neoplasms , Drosophila Proteins , Insulins , Mice , Animals , Humans , Cachexia/etiology , Cachexia/metabolism , Drosophila/metabolism , Mitochondrial Dynamics , Muscular Atrophy/pathology , Muscle, Skeletal/metabolism , Colonic Neoplasms/metabolism , Insulins/metabolism , Lipids , Insulin-Like Growth Factor Binding Proteins/metabolism , Drosophila Proteins/genetics , Drosophila Proteins/metabolism
2.
Hippocampus ; 33(11): 1208-1227, 2023 11.
Article in English | MEDLINE | ID: mdl-37705290

ABSTRACT

Calcium (Ca2+ ) imaging reveals a variety of correlated firing in cultures of dissociated hippocampal neurons, pinpointing the non-synaptic paracrine release of glutamate as a possible mediator for such firing patterns, although the biophysical underpinnings remain unknown. An intriguing possibility is that extracellular glutamate could bind metabotropic receptors linked with inositol trisphosphate (IP3 ) mediated release of Ca2+ from the endoplasmic reticulum of individual neurons, thereby modulating neural activity in combination with sarco/endoplasmic reticulum Ca2+ transport ATPase (SERCA) and voltage-gated Ca2+ channels (VGCC). However, the possibility that such release may occur in different neuronal compartments and can be inherently stochastic poses challenges in the characterization of such interplay between various Ca2+ channels. Here we deploy biophysical modeling in association with Monte Carlo parameter sampling to characterize such interplay and successfully predict experimentally observed Ca2+ patterns. The results show that the neurotransmitter level at the plasma membrane is the extrinsic source of heterogeneity in somatic Ca2+ transients. Our analysis, in particular, identifies the origin of such heterogeneity to an intrinsic differentiation of hippocampal neurons in terms of multiple cellular properties pertaining to intracellular Ca2+ signaling, such as VGCC, IP3 receptor, and SERCA expression. In the future, the biophysical model and parameter estimation approach used in this study can be upgraded to predict the response of a system of interconnected neurons.


Subject(s)
Hippocampus , Neurons , Hippocampus/physiology , Neurons/physiology , Calcium/metabolism , Endoplasmic Reticulum/metabolism , Glutamic Acid/metabolism , Inositol 1,4,5-Trisphosphate Receptors/metabolism , Calcium Signaling/physiology
3.
Biotechnol Bioeng ; 120(6): 1640-1656, 2023 06.
Article in English | MEDLINE | ID: mdl-36810760

ABSTRACT

Coronavirus disease 2019 is known to be regulated by multiple factors such as delayed immune response, impaired T cell activation, and elevated levels of proinflammatory cytokines. Clinical management of the disease remains challenging due to interplay of various factors as drug candidates may elicit different responses depending on the staging of the disease. In this context, we propose a computational framework which provides insights into the interaction between viral infection and immune response in lung epithelial cells, with an aim of predicting optimal treatment strategies based on infection severity. First, we formulate the model for visualizing the nonlinear dynamics during the disease progression considering the role of T cells, macrophages and proinflammatory cytokines. Here, we show that the model is capable of emulating the dynamic and static data trends of viral load, T cell, macrophage levels, interleukin (IL)-6 and TNF-α levels. Second, we demonstrate the ability of the framework to capture the dynamics corresponding to mild, moderate, severe, and critical condition. Our result shows that, at late phase (>15 days), severity of disease is directly proportional to pro-inflammatory cytokine IL6 and tumor necrosis factor (TNF)-α levels and inversely proportional to the number of T cells. Finally, the simulation framework was used to assess the effect of drug administration time as well as efficacy of single or multiple drugs on patients. The major contribution of the proposed framework is to utilize the infection progression model for clinical management and administration of drugs inhibiting virus replication and cytokine levels as well as immunosuppressant drugs at various stages of the disease.


Subject(s)
COVID-19 , Humans , Cytokines , Interleukin-6 , Tumor Necrosis Factor-alpha , Macrophages
4.
Biotechnol Bioeng ; 120(12): 3529-3542, 2023 12.
Article in English | MEDLINE | ID: mdl-37749905

ABSTRACT

In recent times, it has been realized that novel vaccines are required to combat emerging disease outbreaks, and faster optimization is required to respond to global vaccine demands. Although, fed-batch operations offer better productivity, experiment-based optimization of a new fed-batch process remains expensive and time-consuming. In this context, we propose a novel computational framework that can be used for process optimization and control of a fed-batch baculovirus-insect cell system. Since the baculovirus expression vector system (BEVS) is known to be widely used platforms for recombinant protein/vaccine production, we chose this system to demonstrate the identification of optimal profile. Toward this, first, we constructed a mathematical model that captures the time course of cell and virus growth in a baculovirus-insect cell system. Second, the proposed model was used for numerical analysis to determine the optimal operating profiles of control variables such as culture media, cell density, and oxygen based on a multiobjective optimal control formulation. Third, a detailed comparison between batch and fed-batch culture was perfromed along with a comparison between various alternatives of fed-batch operation. Finally, we demonstrate that a model-based quantification of controlled feed addition in fed-batch culture is capable of providing better productivity as compared to a batch culture. The proposed framework can be utilized for the estimation of optimal operating regions of different control variables to achieve maximum infected cell density and virus yield while minimizing the substrate/media, uninfected cell, and oxygen consumption.


Subject(s)
Baculoviridae , Vaccines , Animals , Baculoviridae/genetics , Culture Media , Oxygen , Insecta , Cell Count , Bioreactors
5.
J Biol Chem ; 296: 100702, 2021.
Article in English | MEDLINE | ID: mdl-33901492

ABSTRACT

Phospholipase C ß (PLCß), which is activated by the Gq family of heterotrimeric G proteins, hydrolyzes the inner membrane lipid phosphatidylinositol 4,5-bisphosphate (PIP2), generating diacylglycerol and inositol 1,4,5-triphosphate (IP3). Because Gq and PLCß regulate many crucial cellular processes and have been identified as major disease drivers, activation and termination of PLCß signaling by the Gαq subunit have been extensively studied. Gq-coupled receptor activation induces intense and transient PIP2 hydrolysis, which subsequently recovers to a low-intensity steady-state equilibrium. However, the molecular underpinnings of this equilibrium remain unclear. Here, we explored the influence of signaling crosstalk between Gq and Gi/o pathways on PIP2 metabolism in living cells using single-cell and optogenetic approaches to spatially and temporally constrain signaling. Our data suggest that the Gßγ complex is a component of the highly efficient lipase GαqGTP-PLCß-Gßγ. We found that over time, Gßγ dissociates from this lipase complex, leaving the less-efficient GαqGTP-PLCß lipase complex and allowing the significant partial recovery of PIP2 levels. Our findings also indicate that the subtype of the Gγ subunit in Gßγ fine-tunes the lipase activity of Gq-PLCß, in which cells expressing Gγ with higher plasma membrane interaction show lower PIP2 recovery. Given that Gγ shows cell- and tissue-specific subtype expression, our findings suggest the existence of tissue-specific distinct Gq-PLCß signaling paradigms. Furthermore, these results also outline a molecular process that likely safeguards cells from excessive Gq signaling.


Subject(s)
GTP-Binding Protein alpha Subunits, Gq-G11/metabolism , Phosphatidylinositol 4,5-Diphosphate/metabolism , Phospholipase C beta/metabolism , Cell Membrane/metabolism , HeLa Cells , Humans , Hydrolysis , Models, Molecular , Phospholipase C beta/chemistry , Protein Binding , Protein Conformation , Signal Transduction
6.
Mol Pharm ; 19(3): 733-748, 2022 03 07.
Article in English | MEDLINE | ID: mdl-35179892

ABSTRACT

Glaucoma is one of the leading causes of loss of vision. The problems associated with the marketed formulations of anti-glaucoma drugs are low bioavailability, unwanted side effects, and low patient compliance. Hydrogels are an important class of soft materials that play a crucial role in developing an ocular drug delivery system. They assume a special significance in addressing the problems associated with the marketed formulations of eyedrops. An appropriate design of the hydrogel system capable of encapsulating single or multiple drugs for glaucoma has emerged in recent times to overcome such challenges. Although various modes of imaging play critical roles in assessing the efficacy of these formulations, evaluating hydrogels for drug permeation and retention remains challenging. Especially, the assessment of dual drugs in the hydrogel system is not straightforward due to the complexity in measuring drug penetration and retention for in vivo or ex vivo systems. There is a need to develop tools for the fabrication and validation of hydrogel-based systems that give insight into precorneal retention, biocompatibility, cellular uptake, and cell permeation. The current review highlights some of the complexities in formulating hydrogel and benchmarking technologies, including confocal laser scanning microscopy, fluorescent microscopy, slit-lamp biomicroscopy, and camera-based imaging. This review also summarizes recent evaluations of various hydrogel formulations using in vitro and in vivo models. Further the article will help researchers from various disciplines, including formulation scientists and biologists, set up preclinical protocols for evaluating polymeric hydrogels.


Subject(s)
Glaucoma , Hydrogels , Drug Delivery Systems , Eye , Glaucoma/drug therapy , Humans , Ophthalmic Solutions
7.
Biotechnol Bioeng ; 118(1): 238-252, 2021 01.
Article in English | MEDLINE | ID: mdl-32936454

ABSTRACT

Baculoviruses have enormous potential for use as biopesticides to control insect pest populations without the adverse environmental effects posed by the widespread use of chemical pesticides. However, continuous baculovirus production is susceptible to DNA mutation and the subsequent production of defective interfering particles (DIPs). The amount of DIPs produced and their genome length distribution are of great interest not only for baculoviruses but for many other DNA and RNA viruses. In this study, we elucidate this aspect of virus replication using baculovirus as an example system and both experimental and modeling studies. The existing mathematical models for the virus replication process consider DIPs as a lumped quantity and do not consider the genome length distribution of the DIPs. In this study, a detailed population balance model for the cell-virus culture is presented, which predicts the genome length distribution of the DIP population along with their relative proportion. The model is simulated using the kinetic Monte Carlo algorithm, and the results agree well with the experimental results. Using this model, a practical strategy to maintain the DIP fraction to near to its maximum and minimum limits has been demonstrated.


Subject(s)
Genome, Viral , Nucleopolyhedroviruses/physiology , Spodoptera/virology , Virus Replication , Animals , Cell Line , Monte Carlo Method
8.
Biotechnol Bioeng ; 117(10): 3108-3123, 2020 10.
Article in English | MEDLINE | ID: mdl-32557561

ABSTRACT

The development of a minimally invasive, robust, and inexpensive technique that permits real-time monitoring of cell responses on biomaterial scaffolds can improve the eventual outcomes of scaffold-based tissue engineering strategies. Towards establishing correlations between in situ biological activity and cell fate, we have developed a comprehensive workflow for real-time volumetric imaging of spatiotemporally varying cytosolic calcium oscillations in pure microglial cells cultured on electrospun meshes. Live HMC3 cells on randomly oriented electrospun fibers were stained with a fluorescent dye and imaged using a laser scanning confocal microscope. Resonance scanning provided high-resolution in obtaining the time-course of intracellular calcium levels without compromising spatial and temporal resolution. Three-dimensional reconstruction and depth-coding enabled the visualization of cell location and intracellular calcium levels as a function of sample thickness. Importantly, changes in cell morphology and in situ calcium spiking were quantified in response to a soluble biochemical cue and varying matrix architectures (i.e., randomly oriented and aligned fibers). Importantly, raster plots generated from spiking data revealed calcium signatures specific to culture conditions. In the future, our approach can be used to elucidate correlations between calcium signatures and cell phenotype/activation, and facilitate the rational design of scaffolds for biomedical applications.


Subject(s)
Calcium Signaling , Calcium/metabolism , Cytosol/metabolism , Microglia/metabolism , Microscopy, Confocal/methods , Tissue Engineering/methods , Tissue Scaffolds/chemistry , Biocompatible Materials/chemistry , Cells, Cultured , Humans , Imaging, Three-Dimensional/methods , Microglia/cytology , Microscopy, Electron, Scanning , Nanofibers/chemistry
9.
Biotechnol Bioeng ; 117(5): 1483-1501, 2020 05.
Article in English | MEDLINE | ID: mdl-32017023

ABSTRACT

Packaging during the passaging of viruses in cell cultures yields various phenotypes and is regulated by viral protein expression in infected cells. Although such a packaging mechanism has a profound effect in controlling the virus yield, little is known about the underlying statistical models followed by virus packaging and protein expression among cells infected with the virus. A predictive framework combining identification of the probability density function (PDF) based on log-likelihood and using the PDF for Monte-Carlo simulations is developed. The Birnbaum-Saunders distribution was found to be consistent with all three-virus packaging levels, including nucleocapsids/occlusion-derived virus (ODV), ODVs/polyhedra, and polyhedra/cell for both wild-type and genetically modified AcMNPV. Next, it was demonstrated that PDF fitting could be used to compare two viruses having distinctly different genetic configurations. Finally, the identified PDF can be incorporated in RNA synthesis parameters for baculovirus infection to predict the cell-to-cell variability in protein expression using Monte-Carlo simulations. The proposed tool can be used for the estimation of uncertainty in the kinetic parameter and prediction of cell-to-cell variability for other biological systems.


Subject(s)
Cell Culture Techniques/methods , Computer Simulation , Monte Carlo Method , Virus Cultivation/methods , Animals , Kinetics , Microscopy, Confocal , Microscopy, Electron, Transmission , Models, Statistical , Nucleopolyhedroviruses/genetics , Nucleopolyhedroviruses/metabolism , Recombinant Proteins/analysis , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Sf9 Cells , Viral Proteins/analysis , Viral Proteins/genetics , Viral Proteins/metabolism
10.
J Gen Virol ; 99(9): 1151-1171, 2018 09.
Article in English | MEDLINE | ID: mdl-30027883

ABSTRACT

The baculovirus expression vector system (BEVS) is an emerging tool for the production of recombinant proteins, vaccines and bio-pesticides. However, a system-level understanding of the complex infection process is important in realizing large-scale production at a lower cost. The entire baculovirus infection process is summarized as a combination of various modules and the existing mathematical models are discussed in light of these modules. This covers a systematic review of the present understanding of virus internalization, viral DNA replication, protein expression, budded virus (BV) and occlusion-derived virus (ODV) formation, few polyhedral (FP) and defective interfering particle (DIP) mutant formation, cell cycle modification and apoptosis during the viral infection process. The corresponding theoretical models are also included. Current knowledge regarding the molecular biology of the baculovirus/insect cell system is integrated with population balance and mass action kinetics models. Furthermore, the key steps for simulating cell and virus densities and their underlying features are discussed. This review may facilitate the further development and refinement of mathematical models, thereby providing the basis for enhanced control and optimization of bioreactor operation.


Subject(s)
Insecta/virology , Models, Biological , Nucleopolyhedroviruses/physiology , Animals , Apoptosis , Cell Cycle/physiology , DNA Replication , DNA, Viral/physiology , Gene Expression Regulation, Viral/physiology , Larva/virology , Sf9 Cells , Virus Physiological Phenomena , Virus Replication
11.
Proc Natl Acad Sci U S A ; 110(17): E1565-74, 2013 Apr 23.
Article in English | MEDLINE | ID: mdl-23479634

ABSTRACT

G-protein-coupled receptor (GPCR) activity gradients evoke important cell behavior but there is a dearth of methods to induce such asymmetric signaling in a cell. Here we achieved reversible, rapidly switchable patterns of spatiotemporally restricted GPCR activity in a single cell. We recruited properties of nonrhodopsin opsins--rapid deactivation, distinct spectral tuning, and resistance to bleaching--to activate native Gi, Gq, or Gs signaling in selected regions of a cell. Optical inputs were designed to spatiotemporally control levels of second messengers, IP3, phosphatidylinositol (3,4,5)-triphosphate, and cAMP in a cell. Spectrally selective imaging was accomplished to simultaneously monitor optically evoked molecular and cellular response dynamics. We show that localized optical activation of an opsin-based trigger can induce neurite initiation, phosphatidylinositol (3,4,5)-triphosphate increase, and actin remodeling. Serial optical inputs to neurite tips can refashion early neuron differentiation. Methods here can be widely applied to program GPCR-mediated cell behaviors.


Subject(s)
Light , Neurites/metabolism , Opsins/radiation effects , Receptors, G-Protein-Coupled/metabolism , Signal Transduction/radiation effects , Cyclic AMP/metabolism , Fluorescence Resonance Energy Transfer , Humans , Opsins/metabolism , Phosphatidylinositol Phosphates/metabolism , Time-Lapse Imaging
12.
Proc Natl Acad Sci U S A ; 110(17): E1575-83, 2013 Apr 23.
Article in English | MEDLINE | ID: mdl-23569254

ABSTRACT

There is a dearth of approaches to experimentally direct cell migration by continuously varying signal input to a single cell, evoking all possible migratory responses and quantitatively monitoring the cellular and molecular response dynamics. Here we used a visual blue opsin to recruit the endogenous G-protein network that mediates immune cell migration. Specific optical inputs to this optical trigger of signaling helped steer migration in all possible directions with precision. Spectrally selective imaging was used to monitor cell-wide phosphatidylinositol (3,4,5)-triphosphate (PIP3), cytoskeletal, and cellular dynamics. A switch-like PIP3 increase at the cell front and a decrease at the back were identified, underlying the decisive migratory response. Migration was initiated at the rapidly increasing switch stage of PIP3 dynamics. This result explains how a migratory cell filters background fluctuations in the intensity of an extracellular signal but responds by initiating directionally sensitive migration to a persistent signal gradient across the cell. A two-compartment computational model incorporating a localized activator that is antagonistic to a diffusible inhibitor was able to simulate the switch-like PIP3 response. It was also able simulate the slow dissipation of PIP3 on signal termination. The ability to independently apply similar signaling inputs to single cells detected two cell populations with distinct thresholds for migration initiation. Overall the optical approach here can be applied to understand G-protein-coupled receptor network control of other cell behaviors.


Subject(s)
Cell Movement/physiology , GTP-Binding Proteins/metabolism , Light , Models, Biological , Rod Opsins/metabolism , Rod Opsins/radiation effects , Signal Transduction/radiation effects , Animals , Cell Line , Cell Movement/radiation effects , Mice , Phosphatidylinositol Phosphates/metabolism
13.
Biophys J ; 107(1): 242-54, 2014 Jul 01.
Article in English | MEDLINE | ID: mdl-24988358

ABSTRACT

G-protein ßγ subunits translocate reversibly from the plasma membrane to internal membranes on receptor activation. Translocation rates differ depending on the γ subunit type. There is limited understanding of the role of the differential rates of Gßγ translocation in modulating signaling dynamics in a cell. Bifurcation analysis of the calcium oscillatory network structure predicts that the translocation rate of a signaling protein can regulate the damping of system oscillation. Here, we examined whether the Gßγ translocation rate regulates calcium oscillations induced by G-protein-coupled receptor activation. Oscillations in HeLa cells expressing γ subunit types with different translocation rates were imaged and quantitated. The results show that differential Gßγ translocation rates can underlie the diversity in damping characteristics of calcium oscillations among cells. Mathematical modeling shows that a translocation embedded motif regulates damping of G-protein-mediated calcium oscillations consistent with experimental data. The current study indicates that such a motif may act as a tuning mechanism to design oscillations with varying damping patterns by using intracellular translocation of a signaling component.


Subject(s)
Calcium Signaling , GTP-Binding Protein beta Subunits/metabolism , GTP-Binding Protein gamma Subunits/metabolism , Models, Biological , Cell Membrane/metabolism , Feedback, Physiological , GTP-Binding Protein beta Subunits/chemistry , GTP-Binding Protein gamma Subunits/chemistry , HeLa Cells , Humans
14.
Methods Mol Biol ; 2829: 289-300, 2024.
Article in English | MEDLINE | ID: mdl-38951345

ABSTRACT

Nonviral transfection has been used to express various recombinant proteins, therapeutics, and virus-like particles (VLP) in mammalian and insect cells. Virus-free methods for protein expression require fewer steps for obtaining protein expression by eliminating virus amplification and measuring the infectivity of the virus. The nonviral method uses a nonlytic plasmid to transfect the gene of interest into the insect cells instead of using baculovirus, a lytic system. In this chapter, we describe one of the transfection methods, which uses polyethyleneimine (PEI) as a DNA delivery material into the insect cells to express the recombinant protein in both adherent and suspension cells.


Subject(s)
Polyethyleneimine , Recombinant Proteins , Transfection , Animals , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Transfection/methods , Polyethyleneimine/chemistry , Plasmids/genetics , Insecta/genetics , Sf9 Cells , Cell Line , Gene Expression , Spodoptera
15.
ACS Biomater Sci Eng ; 10(7): 4359-4373, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38842569

ABSTRACT

The conventional approach for developing any polymeric biomaterial is to follow protocols available in the literature and/or perform trial-and-error runs without a scientific basis. Here, we propose an analysis of a complex overlay of molecular interactions between drugs and polymers that provides a strategic pathway for biomaterial development. First, this work provides an innovative interaction-based method for developing an ocular formulation involving in situ gelling chitosan, gelatin, and glycerophosphate systems. A systematic interaction study is conducted based on the measurement of hydrodynamic radius, zeta potential, and viscosity with the sequential addition of formulation components. The increase in the hydrodynamic radius of the polymer with the addition of drugs can be interpreted as better diffusion of the drug inside the charged polymer chains and vice versa. Based on the knowledge of these interactions, a formulation has been designed that shows better drug release results with extended and sustained release compared to literature protocols, hence accentuating the importance of this study. An in-depth analysis of interactions can lead to a better understanding of the system. Second, we demonstrate the development of two dual-drug biomaterial systems, i.e., an in situ gelling and a liquid formulation at ocular surface temperature from the same polymers, which can be used as an ocular antiglaucoma formulation. Prior knowledge of the interactions between the drug polymers can be used to design a better formulation. The demonstrated application of this interaction-based protocol development can be extended universally to any biomaterial. This would provide a comprehensive idea about the properties and interactions of polymers and drugs, which can also serve as a base/starting point for a new formulation/biomaterial development.


Subject(s)
Biocompatible Materials , Chitosan , Glycerophosphates , Chitosan/chemistry , Glycerophosphates/chemistry , Biocompatible Materials/chemistry , Viscosity , Drug Liberation , Gelatin/chemistry , Polymers/chemistry , Humans , Gels/chemistry
16.
Methods Mol Biol ; 2800: 167-187, 2024.
Article in English | MEDLINE | ID: mdl-38709484

ABSTRACT

Analyzing the dynamics of mitochondrial content in developing T cells is crucial for understanding the metabolic state during T cell development. However, monitoring mitochondrial content in real-time needs a balance of cell viability and image resolution. In this chapter, we present experimental protocols for measuring mitochondrial content in developing T cells using three modalities: bulk analysis via flow cytometry, volumetric imaging in laser scanning confocal microscopy, and dynamic live-cell monitoring in spinning disc confocal microscopy. Next, we provide an image segmentation and centroid tracking-based analysis pipeline for automated quantification of a large number of microscopy images. These protocols together offer comprehensive approaches to investigate mitochondrial dynamics in developing T cells, enabling a deeper understanding of their metabolic processes.


Subject(s)
Flow Cytometry , Microscopy, Confocal , Mitochondria , Single-Cell Analysis , T-Lymphocytes , Flow Cytometry/methods , Mitochondria/metabolism , Single-Cell Analysis/methods , T-Lymphocytes/metabolism , T-Lymphocytes/cytology , Microscopy, Confocal/methods , Animals , Image Processing, Computer-Assisted/methods , Humans , Mice , Mitochondrial Dynamics
17.
Article in English | MEDLINE | ID: mdl-38083364

ABSTRACT

The mimicry of neurodegenerative diseases in vitro can be observed through the induction of chronic hypoxia, and the impact of this stress is monitored using multiplexed imaging techniques. While laser scanning confocal microscopy (LSCM) is a valuable tool for observing single neurons under degenerative conditions, accurately quantifying RNA distribution and cell size by deep learning tools remains challenging due to the lack of annotated training datasets. To address this, we propose a framework that combines 3D tracking of RNA distribution and cell size identification using unsupervised image segmentation. Additionally, we quantified the calcium level in neurons using fluorescent microscopy using unsupervised image segmentation. First, we performed imaging of neuronal morphology using differential interference contrast (DIC) optics and RNA/calcium level imaging using fluorescent microscopy. Next, we performed k-means clustering-based cell segmentation. The results show that our framework can distinguish between distinct neuronal states under control and chronic hypoxic conditions. The analysis reveals that hypoxia induces a significant increase in cytosolic calcium level, reduction in neuron diameter, and alterations in RNA distribution.Clinical Relevance- The proposed framework is crucial to study the neurodegeneration process and evaluating the efficacy of neuroprotective drugs through image analysis.


Subject(s)
Calcium , Neurons , Humans , Microscopy, Confocal/methods , Cytosol , Hypoxia
18.
Article in English | MEDLINE | ID: mdl-38083674

ABSTRACT

Chronic hypoxia is known to be a major cause of neurite length retraction followed be degeneration. Specifically, laser scanning confocal microscopy (LSCM) based-contrast imaging is used for monitoring neuronal morphology under hypoxic condition. Although imaging of neurons using LSCM via differential contrast imaging (DIC) is a powerful tool to identify the neuronal states under degenerative condition, fully automated quantification of neurite length and cell shape remains challenging. In this context, we propose an integrated framework that combines panorama imaging of neuronal morphology using LSCM, and deep learning model that allows automated tracing of neurites and cell shape. First, we establish an in vitro hypoxic model using cobalt chloride treatment of N2A cells and perform the large-scale imaging using DIC optics. Next, we tested the performance of U-Net, U-Net++ and FCN architecture using DIC images, where U-Net and U-Net++ demonstrates robustness and accuracy in tracing neurite length and segmentation of cell shape. The result shows that the U-Net++ is able to depict the difference in cell size and neurite length for control and chronic hypoxic condition. The proposed method was also validated and compared with other CNN models including FCN and U-Net. Moreover, the analysis indicates a significant alteration of cell shape and neurite length under hypoxic condition via deep-learning based automated cell segmentation.Clinical Relevance-The proposed framework assumes importance where quantification of neurite length and cell shape from a large dataset remains challenging due to time-consuming manual segmentation by experts. Specially, the framework based on labeling of a small dataset (15-20 images) can be used to identify the neuronal state under neurodegeneration and image-based assessment of neuroprotective drugs.


Subject(s)
Deep Learning , Neurites , Humans , Neurites/physiology , Automation , Hypoxia , Cell Size
19.
Chem Commun (Camb) ; 59(31): 4640-4643, 2023 Apr 13.
Article in English | MEDLINE | ID: mdl-36988099

ABSTRACT

Focusing on a reliable supramolecular synthon approach, novel molecular salts of the antihypertensive medication ketanserin (KTS) with aromatic carboxylic acid derivatives (benzoic acid (BA), 2-hydroxybenzoic acid (2-HBA), and 2,5-dihydroxybenzoic acid (2,5-DHBA)) are reported. Binary salts of KTS with the respective salt former were obtained via solvent-assisted grinding followed by solution crystallization. Salt production was confirmed through crystal structure investigations that revealed proton transfer from the carboxylic acid group of the salt former to the piperidine nitrogen atom of KTS. A rigorous investigation of the crystal packing of novel binary salts of KTS inspired the construction of ternary adducts, and a ternary crystalline product was subsequently identified using milrinone (MLN), another cardiotonic drug. According to our knowledge, this is the first instance of a dual-drug ternary co-crystal combining both antihypertensive drugs. In order to evaluate the impacts of co-crystallization on the in vitro release behaviour of binary and ternary adducts, solubility tests for the cocrystal were carried out under a variety of physiological pH conditions. The results indicate that, in contrast to the parent drug and binary adducts, the solubility rate of the ternary adducts is significantly increased. Finally, the stability of the synthesised adduct was evaluated under a range of conditions, including temperature (40 ± 1 °C), humidity (90% ± 5% RH, 25 °C) and various solvents media, and it was established that they have good stability. We anticipate that the present findings will work with a wide range of medication combinations, providing a potential new approach to create multi-drug systems for cardiovascular disease.


Subject(s)
Antihypertensive Agents , Salts , Antihypertensive Agents/chemistry , Ketanserin , Salts/chemistry , Solubility , Crystallization , Solvents/chemistry
20.
Neurochem Int ; 164: 105466, 2023 03.
Article in English | MEDLINE | ID: mdl-36587745

ABSTRACT

Cellular hypoxia is a major cause of oxidative stress, culminating in neuronal damage in neurodegenerative diseases. Numerous ex vivo studies have implicated that hypoxia episodes leading to disruption of Ca2+ homeostasis and redox status contribute to the progression of various neuropathologies and cell death. Isolation and maintenance of primary cell culture being cost-intensive, the details of the time course relationship between Ca2+ overload, L-type Ca2+ channel function, and neurite retraction under chronic and long-term hypoxia remain undefined. In order to explore the effect of oxidative stress and Ca2+ overload on neurite length, first, we developed a 5-day-long neurite outgrowth model using N2a cell line. Second, we propose a chronic hypoxia model to investigate the modulation of the L-type Ca2+ channel (Cav1.2) and oxidative resistance gene (OXR1) expression level during the process of neurite retraction and neuronal damage over 32 h. Thirdly, we developed a framework for quantitative analysis of cytosolic Ca2+, superoxide formation, neurite length, and constriction formation in individual cells using live imaging that provides an understanding of molecular targets. Our findings suggest that an increase in cytosolic Ca2+ is a feature of an early phase of hypoxic stress. Further, we demonstrate that augmentation in the L-type channel leads to amplification in Ca2+ overload, ROS accumulation, and a reduction in neurite length during the late phase of hypoxic stress. Next, we demonstrated that non-prophylactic treatment of resveratrol leads to the reduction of calcium overloading under chronic hypoxia via lowering of L-type channel expression. Finally, we demonstrate that resveratrol-mediated reduction of Cav1.2 channel and STAT3 expression are associated with retention of neurite integrity. The proposed in vitro model assumes significance in the context of drug designing and testing that demands monitoring of neurite length and constriction formations by imaging before animal testing.


Subject(s)
Calcium , Neurites , Animals , Resveratrol/pharmacology , Calcium/metabolism , Hypoxia/metabolism , Neurons/metabolism , Calcium Channels, L-Type
SELECTION OF CITATIONS
SEARCH DETAIL