Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Main subject
Language
Publication year range
1.
Food Chem ; 429: 136793, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-37535989

ABSTRACT

Extra virgin olive oil traceability and authenticity are important quality indicators, and are currently the subject of exhaustive research, for developing methods to secure olive oil origin-related issues. The aim of this study was the development of a classification model capable of olive cultivar identification based on olive oil chemical composition. To achieve our aim, 385 samples of two Greek and three Italian olive cultivars were collected during two successive crop years from different locations in the coastline part of western Greece and southern Italy and analyzed for their chemical characteristics. Principal Component Analysis showed trends of differentiation among olive cultivars within or between the crop years. Artificial intelligence model of the XGBoost machine learning algorithm showed high performance in classifying the five olive cultivars from the pooled samples.


Subject(s)
Olea , Olive Oil/chemistry , Olea/chemistry , Artificial Intelligence , Algorithms , Machine Learning
2.
Front Nutr ; 9: 773746, 2022.
Article in English | MEDLINE | ID: mdl-35360699

ABSTRACT

The increasing global human population is projected to reach 9.7 billion people by 2050. This population growth is currently linked to the trends of world-wide urbanization, growth of megacities and shifting dietary patterns. While humankind faces the daunting challenge of feeding and providing healthy lives for its teeming populations, urban agriculture holds promise for improving the quality of life in cities. Fortunately, policymakers and planners are accepting the need to support peri-urban farmers to increase the resilience of food systems while efficiently managing already strained natural resources. We argue that for urban agriculture to significantly increase food yields, it is crucial to adopt a One Health approach to agriculture and environmental stewardship. Here, we propose six nature-based and climate-smart approaches to accelerate the transition toward more sustainable food systems. These approaches include reducing the reliance on synthetic agricultural inputs, increasing biodiversity through producing locally adapted crops and livestock breeds, using probiotics and postbiotics, and adopting portable digital decision-support systems. Such radical approaches to transforming food production will require cross-sectoral stakeholder engagement at international, national, and community levels to protect biodiversity and the environment whilst ensuring sustainable and nutritious diets that are culturally acceptable, accessible, and affordable for all.

SELECTION OF CITATIONS
SEARCH DETAIL