Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
Proc Natl Acad Sci U S A ; 114(11): E2243-E2252, 2017 03 14.
Article in English | MEDLINE | ID: mdl-28246330

ABSTRACT

Rapid and efficient protocols to generate oligodendrocytes (OL) from human induced pluripotent stem cells (iPSC) are currently lacking, but may be a key technology to understand the biology of myelin diseases and to develop treatments for such disorders. Here, we demonstrate that the induction of three transcription factors (SOX10, OLIG2, NKX6.2) in iPSC-derived neural progenitor cells is sufficient to rapidly generate O4+ OL with an efficiency of up to 70% in 28 d and a global gene-expression profile comparable to primary human OL. We further demonstrate that iPSC-derived OL disperse and myelinate the CNS of Mbpshi/shiRag-/- mice during development and after demyelination, are suitable for in vitro myelination assays, disease modeling, and screening of pharmacological compounds potentially promoting oligodendroglial differentiation. Thus, the strategy presented here to generate OL from iPSC may facilitate the studying of human myelin diseases and the development of high-throughput screening platforms for drug discovery.


Subject(s)
Cell Differentiation/genetics , Induced Pluripotent Stem Cells/cytology , Induced Pluripotent Stem Cells/metabolism , Oligodendroglia/cytology , Oligodendroglia/metabolism , Transcription Factors/genetics , Animals , Biomarkers , Brain/metabolism , Brain/pathology , Brain/ultrastructure , Cell Death/genetics , Cell Lineage/genetics , Cells, Cultured , Cluster Analysis , Demyelinating Diseases/genetics , Demyelinating Diseases/metabolism , Demyelinating Diseases/pathology , Disease Models, Animal , Ectopic Gene Expression , Gene Expression Profiling , Humans , Mice , Mutation , Myelin Basic Protein/genetics , Myelin Basic Protein/metabolism , Myelin Sheath/genetics , Myelin Sheath/metabolism , Neural Stem Cells/cytology , Neural Stem Cells/metabolism , Oxidative Stress , Spinal Cord/metabolism , Spinal Cord/pathology , Spinal Cord/ultrastructure , Transcription Factors/metabolism , Transcriptome , tau Proteins/genetics , tau Proteins/metabolism
2.
Nanoscale ; 13(47): 20052-20066, 2021 Dec 13.
Article in English | MEDLINE | ID: mdl-34842880

ABSTRACT

Nanowire arrays used as cell culture substrates build a potent tool for advanced biological applications such as cargo delivery and biosensing. The unique topography of nanowire arrays, however, renders them a challenging growth environment for cells and explains why only basic cell lines have been employed in existing studies. Here, we present the culturing of human induced pluripotent stem cell-derived neural progenitor cells on rectangularly arranged nanowire arrays: In detail, we mapped the impact on proliferation, viability, and topography-induced membrane deformation across a multitude of array pitches (1, 3, 5, 10 µm) and nanowire lengths (1.5, 3, 5 µm). Against the intuitive expectation, a reduced proliferation was found on the arrays with the smallest array pitch of 1 µm and long NWs. Typically, cells settle in a fakir-like state on such densely-spaced nanowires and thus experience no substantial stress caused by nanowires indenting the cell membrane. However, imaging of F-actin showed a distinct reorganization of the cytoskeleton along the nanowire tips in the case of small array pitches interfering with regular proliferation. For larger pitches, the cell numbers depend on the NW lengths but proliferation generally continued although heavy deformations of the cell membrane were observed caused by the encapsulation of the nanowires. Moreover, we noticed a strong interaction of the nanowires with the nucleus in terms of squeezing and indenting. Remarkably, the cell viability is maintained at about 85% despite the massive deformation of the cells. Considering the enormous potential of human induced stem cells to study neurodegenerative diseases and the high cellular viability combined with a strong interaction with nanowire arrays, we believe that our results pave the way to apply nanowire arrays to human stem cells for future applications in stem cell research and regenerative medicine.


Subject(s)
Induced Pluripotent Stem Cells , Nanowires , Neural Stem Cells , Cell Line , Cell Proliferation , Humans
3.
Methods Mol Biol ; 1888: 21-43, 2019.
Article in English | MEDLINE | ID: mdl-30519939

ABSTRACT

High-throughput phenotypic screening enables the identification of new therapeutic targets even when the molecular mechanism underlying the disease is unknown. In the case of neurodegenerative disease, there is a dire need to identify new targets that can ameliorate, halt, or reverse degeneration. Stem cell-based disease models are particularly powerful tools for phenotypic screening because they use the same cell type affected in patients. Here, we describe the expansion of mouse stem cells and human induced pluripotent stem cells as well as the differentiation of these cells into neural lineages that, when exposed to neuroinflammatory stress, can be used for compound screening followed by hit identification, validation, and target deconvolution.


Subject(s)
Cell Culture Techniques , Drug Discovery , Phenotype , Stem Cells/drug effects , Stem Cells/metabolism , Animals , Astrocytes/cytology , Astrocytes/drug effects , Astrocytes/metabolism , Cell Differentiation , Drug Discovery/methods , Drug Evaluation, Preclinical/methods , High-Throughput Screening Assays , Humans , Mice , Neural Stem Cells/cytology , Neural Stem Cells/drug effects , Neural Stem Cells/metabolism , Neurons/cytology , Neurons/drug effects , Neurons/metabolism , Reproducibility of Results , Small Molecule Libraries , Stem Cells/cytology
4.
NPJ Parkinsons Dis ; 5: 5, 2019.
Article in English | MEDLINE | ID: mdl-30963107

ABSTRACT

Modeling Parkinson's disease (PD) using advanced experimental in vitro models is a powerful tool to study disease mechanisms and to elucidate unexplored aspects of this neurodegenerative disorder. Here, we demonstrate that three-dimensional (3D) differentiation of expandable midbrain floor plate neural progenitor cells (mfNPCs) leads to organoids that resemble key features of the human midbrain. These organoids are composed of midbrain dopaminergic neurons (mDANs), which produce and secrete dopamine. Midbrain-specific organoids derived from PD patients carrying the LRRK2-G2019S mutation recapitulate disease-relevant phenotypes. Automated high-content image analysis shows a decrease in the number and complexity of mDANs in LRRK2-G2019S compared to control organoids. The floor plate marker FOXA2, required for mDAN generation, increases in PD patient-derived midbrain organoids, suggesting a neurodevelopmental defect in mDANs expressing LRRK2-G2019S. Thus, we provide a robust method to reproducibly generate 3D human midbrain organoids containing mDANs to investigate PD-relevant patho-mechanisms.

5.
Stem Cell Reports ; 12(3): 502-517, 2019 03 05.
Article in English | MEDLINE | ID: mdl-30773488

ABSTRACT

Neuroinflammation is a hallmark of neurological disorders and is accompanied by the production of neurotoxic agents such as nitric oxide. We used stem cell-based phenotypic screening and identified small molecules that directly protected neurons from neuroinflammation-induced degeneration. We demonstrate that inhibition of CDK5 is involved in, but not sufficient for, neuroprotection. Instead, additional inhibition of GSK3ß is required to enhance the neuroprotective effects of CDK5 inhibition, which was confirmed using short hairpin RNA-mediated knockdown of CDK5 and GSK3ß. Quantitative phosphoproteomics and high-content imaging demonstrate that neurite degeneration is mediated by aberrant phosphorylation of multiple microtubule-associated proteins. Finally, we show that our hit compound protects neurons in vivo in zebrafish models of motor neuron degeneration and Alzheimer's disease. Thus, we demonstrate an overlap of CDK5 and GSK3ß in mediating the regulation of the neuronal cytoskeleton and that our hit compound LDC8 represents a promising starting point for neuroprotective drugs.


Subject(s)
Cyclin-Dependent Kinase 5/metabolism , Cytoskeleton/metabolism , Glycogen Synthase Kinase 3 beta/metabolism , Inflammation/metabolism , Nerve Degeneration/metabolism , Neurons/metabolism , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Animals , Cytoskeleton/drug effects , Humans , Inflammation/drug therapy , Microtubules/drug effects , Microtubules/metabolism , Nerve Degeneration/drug therapy , Neurites/drug effects , Neurites/metabolism , Neurons/drug effects , Neuroprotective Agents/pharmacology , Phosphorylation/drug effects , Signal Transduction/drug effects , Zebrafish/metabolism
6.
PLoS One ; 13(3): e0192497, 2018.
Article in English | MEDLINE | ID: mdl-29513666

ABSTRACT

Induced pluripotent stem cells (iPSCs) have recapitulated several aspects of Parkinson's disease (PD), but most iPSCs are derived from familial cases, which account for only about 15% of patients. Thus, while the emphasis has justifiably been on using iPSCs to model rare familial cases, models for the most common forms of PD are critically lacking. Here, we report the generation of an iPSC-based model of idiopathic PD (iPD) with or without RS1491923, which is a common risk variant in the LRRK2 locus. Consistent with GWA studies, we found large variability in our datasets. However, iPSC-derived neurons carrying the risk allele emerged for displaying subtle disturbances of cellular degradative systems, in line with familial PD models. We also observed that treatment with the LRRK2 inhibitor CZC-25146 slightly reduced a marker of aSYN pathology in all iPD lines. Future iPSC-based studies may need to be structured similarly to large GWA studies in order to obtain relevant statistical power. However, results from this pilot study suggest that iPSC-based modeling represents an attractive way to investigate idiopathic diseases.


Subject(s)
Induced Pluripotent Stem Cells/metabolism , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/genetics , Parkinson Disease/genetics , Polymorphism, Single Nucleotide , Aged , Alleles , Cell Differentiation/genetics , Cells, Cultured , Female , Humans , Male , Middle Aged , Models, Genetic , Parkinson Disease/pathology , Pilot Projects , Risk Factors
7.
Cell Chem Biol ; 25(4): 357-369.e6, 2018 04 19.
Article in English | MEDLINE | ID: mdl-29396292

ABSTRACT

Aberrant hedgehog (Hh) signaling contributes to the pathogenesis of multiple cancers. Available inhibitors target Smoothened (Smo), which can acquire mutations causing drug resistance. Thus, compounds that inhibit Hh signaling downstream of Smo are urgently needed. We identified dynarrestin, a novel inhibitor of cytoplasmic dyneins 1 and 2. Dynarrestin acts reversibly to inhibit cytoplasmic dynein 1-dependent microtubule binding and motility in vitro without affecting ATP hydrolysis. It rapidly and reversibly inhibits endosome movement in living cells and perturbs mitosis by inducing spindle misorientation and pseudoprometaphase delay. Dynarrestin reversibly inhibits cytoplasmic dynein 2-dependent intraflagellar transport (IFT) of the cargo IFT88 and flux of Smo within cilia without interfering with ciliogenesis and suppresses Hh-dependent proliferation of neuronal precursors and tumor cells. As such, dynarrestin is a valuable tool for probing cytoplasmic dynein-dependent cellular processes and a promising compound for medicinal chemistry programs aimed at development of anti-cancer drugs.


Subject(s)
Cytoplasmic Dyneins/antagonists & inhibitors , Small Molecule Libraries/chemistry , Small Molecule Libraries/pharmacology , Animals , Biological Transport/drug effects , Cell Line , Cell Line, Tumor , Cell Proliferation/drug effects , Cilia/drug effects , Cilia/metabolism , Cytoplasmic Dyneins/metabolism , Hedgehog Proteins/antagonists & inhibitors , Hedgehog Proteins/metabolism , Humans , Mice , Mitosis/drug effects , NIH 3T3 Cells , Protein Transport/drug effects , Signal Transduction/drug effects
8.
PLoS One ; 8(3): e59252, 2013.
Article in English | MEDLINE | ID: mdl-23533608

ABSTRACT

Phenotypic drug discovery requires billions of cells for high-throughput screening (HTS) campaigns. Because up to several million different small molecules will be tested in a single HTS campaign, even small variability within the cell populations for screening could easily invalidate an entire campaign. Neurodegenerative assays are particularly challenging because neurons are post-mitotic and cannot be expanded for implementation in HTS. Therefore, HTS for neuroprotective compounds requires a cell type that is robustly expandable and able to differentiate into all of the neuronal subtypes involved in disease pathogenesis. Here, we report the derivation and propagation using only small molecules of human neural progenitor cells (small molecule neural precursor cells; smNPCs). smNPCs are robust, exhibit immortal expansion, and do not require cumbersome manual culture and selection steps. We demonstrate that smNPCs have the potential to clonally and efficiently differentiate into neural tube lineages, including motor neurons (MNs) and midbrain dopaminergic neurons (mDANs) as well as neural crest lineages, including peripheral neurons and mesenchymal cells. These properties are so far only matched by pluripotent stem cells. Finally, to demonstrate the usefulness of smNPCs we show that mDANs differentiated from smNPCs with LRRK2 G2019S are more susceptible to apoptosis in the presence of oxidative stress compared to wild-type. Therefore, smNPCs are a powerful biological tool with properties that are optimal for large-scale disease modeling, phenotypic screening, and studies of early human development.


Subject(s)
Epithelial Cells/cytology , Epithelial Cells/metabolism , Neural Stem Cells/cytology , Neural Stem Cells/metabolism , Neurodegenerative Diseases/metabolism , Cell Differentiation/genetics , Cell Differentiation/physiology , Cells, Cultured , Electrophysiology , Humans , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2 , Motor Neurons/cytology , Motor Neurons/metabolism , Neural Crest/cytology , Neural Crest/metabolism , Neurodegenerative Diseases/genetics , Neurons/cytology , Neurons/metabolism , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism
9.
Cell Stem Cell ; 12(3): 354-67, 2013 Mar 07.
Article in English | MEDLINE | ID: mdl-23472874

ABSTRACT

The LRRK2 mutation G2019S is the most common genetic cause of Parkinson's disease (PD). To better understand the link between mutant LRRK2 and PD pathology, we derived induced pluripotent stem cells from PD patients harboring LRRK2 G2019S and then specifically corrected the mutant LRRK2 allele. We demonstrate that gene correction resulted in phenotypic rescue in differentiated neurons and uncovered expression changes associated with LRRK2 G2019S. We found that LRRK2 G2019S induced dysregulation of CPNE8, MAP7, UHRF2, ANXA1, and CADPS2. Knockdown experiments demonstrated that four of these genes contribute to dopaminergic neurodegeneration. LRRK2 G2019S induced increased extracellular-signal-regulated kinase 1/2 (ERK) phosphorylation. Transcriptional dysregulation of CADPS2, CPNE8, and UHRF2 was dependent on ERK activity. We show that multiple PD-associated phenotypes were ameliorated by inhibition of ERK. Therefore, our results provide mechanistic insight into the pathogenesis induced by mutant LRRK2 and pointers for the development of potential new therapeutics.


Subject(s)
Extracellular Signal-Regulated MAP Kinases/metabolism , Induced Pluripotent Stem Cells/metabolism , Parkinson Disease/genetics , Parkinson Disease/metabolism , Protein Serine-Threonine Kinases/genetics , Benzamides/pharmacology , Cell Differentiation/drug effects , Cells, Cultured , Diphenylamine/analogs & derivatives , Diphenylamine/pharmacology , Dopamine/metabolism , Extracellular Signal-Regulated MAP Kinases/genetics , Humans , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2 , Mutation , Neurons/cytology , Neurons/drug effects , Oxidopamine/pharmacology , Reverse Transcriptase Polymerase Chain Reaction , Rotenone/pharmacology
10.
Cell Stem Cell ; 11(5): 620-32, 2012 Nov 02.
Article in English | MEDLINE | ID: mdl-23064101

ABSTRACT

Stem cells, through their ability to both self-renew and differentiate, can produce a virtually limitless supply of specialized cells that behave comparably to primary cells. We took advantage of this property to develop an assay for small-molecule-based neuroprotection using stem-cell-derived motor neurons and astrocytes, together with activated microglia as a stress paradigm. Here, we report on the discovery of hit compounds from a screen of more than 10,000 small molecules. These compounds act through diverse pathways, including the inhibition of nitric oxide production by microglia, activation of the Nrf2 pathway in microglia and astrocytes, and direct protection of neurons from nitric-oxide-induced degeneration. We confirm the activity of these compounds using human neurons. Because microglial cells are activated in many neurological disorders, our hit compounds could be ideal starting points for the development of new drugs to treat various neurodegenerative and neurological diseases.


Subject(s)
Microglia/drug effects , Neuroprotective Agents/pharmacology , Small Molecule Libraries/pharmacology , Stem Cells/drug effects , Animals , Astrocytes/cytology , Astrocytes/drug effects , Astrocytes/metabolism , Cells, Cultured , Humans , Microglia/metabolism , Microscopy, Electron, Scanning Transmission , Motor Neurons/cytology , Motor Neurons/drug effects , Motor Neurons/metabolism , NF-E2-Related Factor 2/metabolism , Nerve Degeneration/metabolism , Nerve Degeneration/prevention & control , Neuroprotective Agents/chemistry , Nitric Oxide/biosynthesis , Small Molecule Libraries/chemistry , Stem Cells/cytology , Stem Cells/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL