Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Publication year range
1.
Sensors (Basel) ; 22(15)2022 Aug 03.
Article in English | MEDLINE | ID: mdl-35957348

ABSTRACT

Over the last decade, virtual reality (VR) has become an increasingly accessible commodity. Head-mounted display (HMD) immersive technologies allow researchers to simulate experimental scenarios that would be unfeasible or risky in real life. An example is extreme heights exposure simulations, which can be utilized in research on stress system mobilization. Until recently, electroencephalography (EEG)-related research was focused on mental stress prompted by social or mathematical challenges, with only a few studies employing HMD VR techniques to induce stress. In this study, we combine a state-of-the-art EEG wearable device and an electrocardiography (ECG) sensor with a VR headset to provoke stress in a high-altitude scenarios while monitoring EEG and ECG biomarkers in real time. A robust pipeline for signal clearing is implemented to preprocess the noise-infiltrated (due to movement) EEG data. Statistical and correlation analysis is employed to explore the relationship between these biomarkers with stress. The participant pool is divided into two groups based on their heart rate increase, where statistically important EEG biomarker differences emerged between them. Finally, the occipital-region band power changes and occipital asymmetry alterations were found to be associated with height-related stress and brain activation in beta and gamma bands, which correlates with the results of the self-reported Perceived Stress Scale questionnaire.


Subject(s)
Smart Glasses , Virtual Reality , Altitude , Electrocardiography , Electroencephalography , Humans
2.
Sensors (Basel) ; 21(8)2021 Apr 15.
Article in English | MEDLINE | ID: mdl-33920856

ABSTRACT

In this paper we investigate the essential minimum functionality of the autonomous blockchain, and the minimum hardware and software required to support it in the micro-scale in the IoT world. The application of deep-blockchain operation in the lower-level activity of the IoT ecosystem, is expected to bring profound clarity and constitutes a unique challenge. Setting up and operating bit-level blockchain mechanisms on minimal IoT elements like smart switches and active sensors, mandates pushing blockchain engineering to the limits. "How deep can blockchain actually go?" "Which is the minimum Thing of the IoT world that can actually deliver autonomous blockchain functionality?" To answer, an experiment based on IoT micro-controllers was set. The "Witness Protocol" was defined to set the minimum essential micro-blockchain functionality. The protocol was developed and installed on a peer, ad-hoc, autonomous network of casual, real-life IoT micro-devices. The setup was tested, benchmarked, and evaluated in terms of computational needs, efficiency, and collective resistance against malicious attacks. The leading considerations are highlighted, and the results of the experiment are presented. Findings are intriguing and prove that fully autonomous, private micro-blockchain networks are absolutely feasible in the smart dust world, utilizing the capacities of the existing low-end IoT devices.

SELECTION OF CITATIONS
SEARCH DETAIL