Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Publication year range
1.
Mar Drugs ; 20(8)2022 Aug 02.
Article in English | MEDLINE | ID: mdl-36005502

ABSTRACT

The production of non-fish based docosahexaenoic acid (DHA) for feed and food has become a critical need in our global context of over-fishing. The industrial-scale production of DHA-rich Thraustochytrids could be an alternative, if costs turned out to be competitive. In order to reduce production costs, this study addresses the feasibility of the non-axenic (non-sterile) cultivation of Aurantiochytrium mangrovei on industrial substrates (as nitrogen and mineral sources and glucose syrup as carbon and energy sources), and its scale-up from laboratory (250 mL) to 500 L cultures. Pilot-scale reactors were airlift cylinders. Batch and fed-batch cultures were tested. Cultures over 38 to 62 h achieved a dry cell weight productivity of 3.3 to 5.5 g.L-1.day-1, and a substrate to biomass yield of up to 0.3. DHA productivity ranged from 10 to 0.18 mg.L-1.day-1. Biomass productivity appears linearly related to oxygen transfer rate. Bacterial contamination of cultures was low enough to avoid impacts on fatty acid composition of the biomass. A specific work on microbial risks assessment (in supplementary files) showed that the biomass can be securely used as feed. However, to date, there is a law void in EU legislation regarding the recycling of nitrogen from digestate from animal waste for microalgae biomass and its usage in animal feed. Overall, the proposed process appears similar to the industrial yeast production process (non-axenic heterotrophic process, dissolved oxygen supply limiting growth, similar cell size). Such similarity could help in further industrial developments.


Subject(s)
Nitrogen , Stramenopiles , Animals , Biomass , Bioreactors/microbiology , Conservation of Natural Resources , Docosahexaenoic Acids , Fisheries , Oxygen
2.
Biomolecules ; 10(5)2020 05 21.
Article in English | MEDLINE | ID: mdl-32455747

ABSTRACT

: The present study sought to characterize the synthesis pathways producing the essential polyunsaturated fatty acid (PUFA) 20:5n-3 (EPA). For this, the incorporation of 13C was experimentally monitored into 10 fatty acids (FA) during the growth of the diatom Chaetoceros muelleri for 24 h.Chaetoceros muelleri preferentially and quickly incorporated 13C into C18 PUFAs such as 18:2n-6 and 18:3n-6 as well as 16:0 and 16:1n-7, which were thus highly 13C-enriched. During the experiment, 20:5n-3 and 16:3n-4 were among the least-enriched fatty acids. The calculation of the enrichment percentage ratio of a fatty acid B over its suspected precursor A allowed us to suggest that the diatom produced 20:5n-3 (EPA) by a combination between the n-3 (via 18:4n-3) and n-6 (via 18:3n-6 and 20:4n-6) synthesis pathways as well as the alternative ω-3 desaturase pathway (via 20:4n-6). In addition, as FA from polar lipids were generally more enriched in 13C than FA from neutral lipids, particularly for 18:1n-9, 18:2n-6 and 18:3n-6, the existence of acyl-editing mechanisms and connectivity between polar and neutral lipid fatty acid pools were also hypothesized. Because 16:3n-4 and 20:5n-3 presented the same concentration and enrichment dynamics, a structural and metabolic link was proposed between these two PUFAs in C. muelleri.


Subject(s)
Diatoms/metabolism , Fatty Acids, Unsaturated/biosynthesis , Isotope Labeling/methods
SELECTION OF CITATIONS
SEARCH DETAIL