Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 42
Filter
1.
Environ Sci Technol ; 58(3): 1551-1562, 2024 Jan 23.
Article in English | MEDLINE | ID: mdl-38197744

ABSTRACT

Long-term hydrocarbon pollution is a devious threat to aquatic and marine ecosystems. However, microbial responses to chronic pollution remain poorly understood. Combining genome-centric metagenomic and metatranscriptomic analyses of microbial mat samples that experienced chronic hydrocarbon pollution for more than 80 years, we analyzed the transcriptomic activity of alkane and aromatic hydrocarbon degradation pathways at the population level. Consistent with the fluctuating and stratified redox conditions of the habitat, both aerobic and anaerobic hydrocarbon degradation pathways were expressed by taxonomically and metabolically contrasted lineages including members of Bacteroidiales, Desulfobacteraceae, Pseudomonadales; Alcanivoraceae and Halieaceae populations with (photo)-heterotrophic, sulfur- and organohalide-based metabolisms, providing evidence for the co-occurrence and activity of aerobic and anaerobic hydrocarbon degradation pathways in shallow marine microbial mats. In addition, our results suggest that aerobic alkane degradation in long-term pollution involved bacterial families that are naturally widely distributed in marine habitats, but hydrocarbon concentration and composition were found to be a strong structuring factor of their intrafamily diversity and transcriptomic activities.


Subject(s)
Bacteria , Ecosystem , Humans , Bacteria/genetics , Bacteria/metabolism , Hydrocarbons , Alkanes , Metagenome , Biodegradation, Environmental
2.
Extremophiles ; 27(1): 5, 2023 Feb 17.
Article in English | MEDLINE | ID: mdl-36800123

ABSTRACT

Xichú River is a Mexican river located in an environmental preservation area called Sierra Gorda Biosphere Reserve. Around it, there are tons of abandoned mine residues that represent a serious environmental issue. Sediment samples of Xichú River, visibly contaminated by flows of an acid mine drainage, were collected to study their prokaryotic diversity. The study was based on both cultural and non-cultural approaches. The analysis of total 16S rRNA gene by MiSEQ sequencing allowed to identify 182 Operational Taxonomic Units. The community was dominated by Pseudomonadota, Bacteroidota, "Desulfobacterota" and Acidobacteriota (27, 21, 19 and 16%, respectively). Different culture conditions were used focusing on the isolation of anaerobic bacteria, including sulfate-reducing bacteria (SRB) and arsenate-reducing bacteria (ARB). Finally, 16 strains were isolated. Among them, 12 were phylogenetically identified, with two strains being SRB, belonging to the genus Solidesulfovibrio ("Desulfobacterota"), while ten are ARB belonging to the genera Azospira (Pseudomonadota), Peribacillus (Bacillota), Raineyella and Propionicimonas (Actinomycetota). The isolate representative of Raineyella genus probably corresponds to a new species, which, besides arsenate, also reduces nitrate, nitrite, and fumarate.


Subject(s)
Arsenates , Desulfovibrio , RNA, Ribosomal, 16S/genetics , Rivers/microbiology , Mexico , Angiotensin Receptor Antagonists , Angiotensin-Converting Enzyme Inhibitors , Bacteria/genetics , Acids
3.
Microb Ecol ; 80(2): 286-295, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32076743

ABSTRACT

Photosynthetic microbial mats are stable, self-supported communities. Due to their coastal localization, these mats are frequently exposed to hydrocarbon contamination and are able to grow on it. To decipher how this contamination disturbs the functioning of microbial mats, we compared two mats: a contaminated mat exposed to chronic petroleum contamination and a reference mat. The taxonomic and metabolic structures of the mats in spring and fall were determined using metagenomic and metatranscriptomic approaches. Extremely high contamination disturbed the seasonal variations of the mat. ABC transporters, two-component systems, and type IV secretion system-related genes were overabundant in the contaminated mats. Xenobiotic degradation metabolism was minor in the metagenomes of both mats, and only the expression of genes involved in polycyclic aromatic hydrocarbon degradation was higher in the contaminated mat. Interestingly, the expression rates of genes involved in hydrocarbon activation decreased during the 1-year study period, concomitant with the decrease in easily degradable hydrocarbons, suggesting a transient effect of hydrocarbon contamination. Alteromonadales and Oceanospirillales hydrocarbonoclastic bacteria appeared to be key in hydrocarbon remediation in the contaminated mat. Overall, the contaminated microbial mat was able to cope with hydrocarbon contamination and displayed an adaptive functioning that modified seasonal behaviour.


Subject(s)
Hydrocarbons/metabolism , Metagenome , Transcriptome , Water Pollutants, Chemical/metabolism , Bacteria/drug effects , Bacteria/genetics , Bacteria/metabolism
4.
Extremophiles ; 23(2): 249-263, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30712189

ABSTRACT

Vapor steam vents are prevailing structures on geothermal sites in which local geochemical conditions allow the development of extremophilic microorganisms. We describe the structure of the prokaryotic community able to grow on the walls and rocks of such microecosystems in two terrestrial Mexican volcanoes: Paricutín (PI and PII samples) and its satellite Sapichu (S sample). The investigated samples showed similar diversity indices, with few dominant OTUs (abundance > 1%): 21, 16 and 23, respectively for PI, PII and S. However, each steam vent showed a particular community profile: PI was dominated by photosynthetic bacteria (Cyanobacteria and Chloroflexia class), PII by Actinobacteria and Proteobacteria, and S by Ktedonobacteria class, Acidobacteria and Cyanobacteria phyla. Concerning the predicted metabolic potential, we found a dominance of cellular pathways, especially the ones for energy generation with metabolisms for sulfur respiration, nitrogen fixation, methanogenesis, carbon fixation, photosynthesis, and metals, among others. We suggest a different maturity stage for the three studied fumaroles, from the youngest (PI) to the oldest (S and PII), also influenced by the temperature and other geochemical parameters. Furthermore, four anaerobic strains were isolated, belonging to Clostridia class (Clostridium sphenoides, C. swellfunanium and Anaerocolumna cellulosilytica) and to Bacilli class (Paenibacillus azoreducens).


Subject(s)
Bacteria/classification , Hydrothermal Vents/microbiology , Microbiota , Volcanic Eruptions , Bacteria/genetics , Bacteria/isolation & purification , Phylogeny
5.
Int J Syst Evol Microbiol ; 68(5): 1461-1466, 2018 May.
Article in English | MEDLINE | ID: mdl-29533171

ABSTRACT

The strain BerOc1T was isolated from brackish sediments contaminated with hydrocarbons and heavy metals. This strain has been used as a model strain of sulfate-reducer to study the biomethylation of mercury. The cells are vibrio-shaped, motile and not sporulated. Phylogeny and physiological traits placed this strain within the genus Pseudodesulfovibrio. Optimal growth was obtained at 30 °C, 1.5 % NaCl and pH 6.0-7.4. The estimated G+C content of the genomic DNA was 62.6 mol%. BerOc1T used lactate, pyruvate, fumarate, ethanol and hydrogen. Terminal electron acceptors used were sulfate, sulfite, thiosulfate and DMSO. Only pyruvate could be used without a terminal electron acceptor. The major fatty acids were C18 : 0, anteiso-C15 : 0, C16 : 0 and C18 : 1ω7. The name Pseudodesulfovibrio hydrargyri sp. nov. is proposed for the type strain BerOc1T (DSM 10384T=JCM 31820T).


Subject(s)
Deltaproteobacteria/classification , Geologic Sediments/microbiology , Mercury/chemistry , Phylogeny , Water Microbiology , Bacterial Typing Techniques , Base Composition , DNA, Bacterial/genetics , Deltaproteobacteria/genetics , Deltaproteobacteria/isolation & purification , Fatty Acids/chemistry , France , Oxidation-Reduction , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Sulfur-Reducing Bacteria/classification , Sulfur-Reducing Bacteria/genetics , Sulfur-Reducing Bacteria/isolation & purification
6.
Environ Sci Technol ; 52(17): 9758-9767, 2018 09 04.
Article in English | MEDLINE | ID: mdl-30037219

ABSTRACT

The sources and factors controlling concentrations of monomethylmercury (MMHg) in aquatic ecosystems need to be better understood. Here, we investigated Hg transformations in sediments, periphyton associated with green algae's or aquatic plants, and benthic biofilms from the Lake Titicaca hydrosystem and compared them to the occurrence of active methylating microorganisms and extracellular Hg ligands. Intense Hg methylation was found in benthic biofilms and green algae's periphyton, while it remained low in sediments and aquatic plants' periphyton. Demethylation varied between compartments but remained overall in the same range. Hg methylation was mainly carried out by sulfate reducers, although methanogens also played a role. Its variability between compartments was first explained by the presence or absence of the hgcAB genes. Next, both benthic biofilm and green algae's periphyton exhibited a great diversity of extracellular low-molecular-weight (LMW) thiols (13 or 14 compounds) present at a range of a few nmol L-1 or µmol L-1 but clearly dominated by cysteine and 3-mercaptopropionic acid. Hg methylation was overall positively correlated to the total thiol concentrations, albeit to different extents according to the compartment and conditions. This work is the first examining the interplay between active methylating bacterial communities and extracellular ligands in heterotrophic biofilms and supports the involvement of LMW thiols in Hg methylation in real aquatic systems.


Subject(s)
Mercury , Methylmercury Compounds , Periphyton , Water Pollutants, Chemical , Altitude , Biofilms , Ecosystem , Lakes , Methylation , Sulfhydryl Compounds
7.
Microb Ecol ; 73(1): 39-49, 2017 01.
Article in English | MEDLINE | ID: mdl-27581035

ABSTRACT

Estuaries are highly dynamic ecosystems in which freshwater and seawater mix together. Depending on tide and river inflows, particles originating from rivers or from the remobilization of sediments accumulate in the water column. Due to the salinity gradient and the high heterotrophic activity in the estuarine plume, hypoxic and anoxic microniches may form in oxygenated waters, sustaining favorable conditions for resuspended anaerobic microorganisms. In this context, we tested the hypothesis that anaerobic sulfate-reducing prokaryotes may occur in the water column of the Adour River. Using 16S ribosomal RNA (rRNA) and dsrAB-based terminal restriction fragment length polymorphism (T-RFLP) techniques, we characterized total prokaryotic and sulfate-reducing communities along a gradient from estuarine to marine bay waters. Sulfate-reducing prokaryotes were further characterized by the description of dsrB genes and the cultivation of sulfidogenic anaerobic microorganisms. As a result, physical-chemical parameters had a significant effect on water bacterial diversity and community structure along the studied gradient. The concentration of cultured sulfidogenic microorganisms ranged from 1 to 60 × 103 cells l-1 in the water column. Sulfate-reducing prokaryotes occurring in estuarine waters were closely related to microorganisms previously detected in freshwater sediments, suggesting an estuarine origin, mainly by the remobilization of the sediments. In the marine bay station, sediment-derived sulfate-reducing prokaryotes were not cultured anymore, probably due to freshwater dilution, increasing salinity and extended oxic stress. Nevertheless, isolates related to the type strain Desulfovibrio oceani were cultured from the diluted plume and deep marine waters, indicating the occurrence of autochthonous sulfate-reducing bacteria offshore.


Subject(s)
Bays/microbiology , Desulfovibrio/genetics , Desulfovibrio/isolation & purification , Geologic Sediments/microbiology , Seawater/microbiology , Sulfates/metabolism , Biodiversity , Desulfovibrio/classification , Desulfovibrio/metabolism , Ecosystem , Estuaries , Fresh Water/microbiology , Oxidation-Reduction , Polymorphism, Restriction Fragment Length , RNA, Ribosomal, 16S/genetics , Salinity
8.
Extremophiles ; 18(2): 385-98, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24446065

ABSTRACT

Los Azufres spa consists of a hydrothermal spring system in the Mexican Volcanic Axis. Five samples (two microbial mats, two mud pools and one cenote water), characterized by high acidity (pH between 1 and 3) and temperatures varying from 27 to 87 °C, were investigated for their microbial diversity by Terminal-Restriction Fragment Length Polymorphism (T-RFLP) and 16S rRNA gene library analyses. These data are the first to describe microbial diversity from Los Azufres geothermal belt. The data obtained from both approaches suggested a low bacterial diversity in all five samples. Despite their proximity, the sampling points differed by their physico-chemical conditions (mainly temperature and matrix type) and thus exhibited different dominant bacterial populations: anoxygenic phototrophs related to the genus Rhodobacter in the biomats, colorless sulfur oxidizers Acidithiobacillus sp. in the warm mud and water samples, and Lyzobacter sp.-related populations in the hot mud sample (87 °C). Molecular data also allowed the detection of sulfate and sulfur reducers related to Thermodesulfobium and Desulfurella genera. Several strains affiliated to both genera were enriched or isolated from the mesophilic mud sample. A feature common to all samples was the dominance of bacteria involved in sulfur and iron biogeochemical cycles (Rhodobacter, Acidithiobacillus, Thiomonas, Desulfurella and Thermodesulfobium genera).


Subject(s)
Hot Springs/microbiology , Microbiota , Sulfates/metabolism , Sulfur/metabolism , Bacteria/genetics , Bacteria/isolation & purification , Bacteria/metabolism , Mexico , Oxidation-Reduction , Phylogeny , RNA, Ribosomal, 16S/genetics
9.
Environ Sci Pollut Res Int ; 31(30): 42686-42697, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38878247

ABSTRACT

Molybdate inhibits sulfate respiration in sulfate-reducing bacteria (SRB). It is used as an inhibitor to indirectly evaluate the role of SRB in mercury methylation in the environment. Here, the SRB Pseudodesulfovibrio hydrargyri BerOc1 was used to assess the effect of molybdate on cell growth and mercury methylation under various metabolic conditions. Geobacter sulfurreducens PCA was used as the non-SRB counterpart strain with the ability to methylate mercury. While PCA growth and methylation are not affected by molybdate, 1 mM of molybdate inhibits BerOc1 growth under sulfate respiration (50% inhibition) but also under fumarate respiration (complete inhibition). Even more surprising, mercury methylation of BerOc1 is totally inhibited at 0.1 mM of molybdate when grown under sulfate or fumarate respiration with pyruvate as the electron donor. As molybdate is expected to reduce cellular ATP level, the lower Hg methylation observed with pyruvate could be the consequence of lower energy production. Although molybdate alters the expression of hgcA (mercury methylation marker) and sat (involved in sulfate reduction and molybdate sensitivity) in a metabolism-dependent manner, no relationship with mercury methylation rates could be found. Our results show, for the first time, a specific mercury methylation inhibition by molybdate in SRB.


Subject(s)
Mercury , Molybdenum , Molybdenum/pharmacology , Methylation , Geobacter/metabolism
10.
Environ Microbiol ; 15(1): 242-52, 2013 Jan.
Article in English | MEDLINE | ID: mdl-22978606

ABSTRACT

Coastal and estuarine ecosystems are highly susceptible to crude oil pollution. Therefore, in order to examine the resilience of benthic phototrophs that are pivotal to coastal ecosystem functioning, we simulated an oil spill in tidal mesocosms consisting of intact sediment cores from a mudflat at the mouth of the Colne Estuary, UK. At day 21, fluorescence imaging revealed a bloom of cyanobacteria on the surface of oiled sediment cores, and the upper 1.5 cm thick sediment had 7.2 times more cyanobacterial and 1.7 times more diatom rRNA sequences when treated with oil. Photosystem II operating efficiency (Fq'/Fm') was significantly reduced in oiled sediments at day 7, implying that the initial diatom-dominated community was negatively affected by oil, but this was no longer apparent by day 21. Oil addition significantly reduced numbers of the key deposit feeders, and the decreased grazing pressure is likely to be a major factor in the increased abundance of both diatoms and cyanobacteria. By day 5 concentrations of dissolved inorganic nitrogen were significantly lower in oiled mesocosms, likely resulting in the observed increase in nifH-containing, and therefore potentially dinitrogen-fixing, cyanobacteria. Thus, indirect effects of oil, rather than direct inhibition, are primarily responsible for altering the microphytobenthos.


Subject(s)
Bacteria/metabolism , Biodiversity , Geologic Sediments/microbiology , Nitrogen Fixation , Petroleum Pollution , Petroleum , Bacteria/genetics , Bacterial Load , Cyanobacteria/genetics , Diatoms/genetics , Diatoms/physiology , Geologic Sediments/chemistry , Molecular Sequence Data , Oxidoreductases/genetics , Photosystem II Protein Complex/metabolism , Water Pollutants, Chemical/analysis
11.
Appl Microbiol Biotechnol ; 97(1): 369-78, 2013 Jan.
Article in English | MEDLINE | ID: mdl-22350256

ABSTRACT

Anthropogenic extreme environments are among the most interesting sites for the bioprospection of extremophiles since the selection pressures may favor the presence of microorganisms of great interest for taxonomical and astrobiological research as well as for bioremediation technologies and industrial applications. In this work, T-RFLP and 16S rRNA gene library analyses were carried out to describe the autochthonous bacterial populations from an industrial waste characterized as hyper-alkaline (pH between 9 and 14), hyper-saline (around 100 PSU) and highly contaminated with metals, mainly chromium (from 5 to 18 g kg(-1)) and iron (from 2 to 108 g kg(-1)). Due to matrix interference with DNA extraction, a protocol optimization step was required in order to carry out molecular analyses. The most abundant populations, as evaluated by both T-RFLP and 16S rRNA gene library analyses, were affiliated to Bacillus and Lysobacter genera. Lysobacter related sequences were present in the three samples: solid residue and lixiviate sediments from both dry and wet seasons. Sequences related to Thiobacillus were also found; although strains affiliated to this genus are known to have tolerance to metals, they have not previously been detected in alkaline environments. Together with Bacillus (already described as a metal reducer), such organisms could be of use in bioremediation technologies for reducing chromium, as well as for the prospection of enzymes of biotechnological interest.


Subject(s)
Bacteria/classification , Bacteria/genetics , Chromium/analysis , Environmental Microbiology , Industrial Waste , Iron/analysis , Salinity , Cluster Analysis , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , DNA, Ribosomal/chemistry , DNA, Ribosomal/genetics , Hydrogen-Ion Concentration , Metagenome , Molecular Sequence Data , Phylogeny , Polymorphism, Restriction Fragment Length , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA
12.
Microbiol Res ; 273: 127415, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37247586

ABSTRACT

Invasive macrophytes are a persistent environmental problem in aquatic ecosystems. They also cause potential health issues, since periphyton colonizing their aquatic roots are hot spot of mercury methylation. Because periphytons are at the base of the trophic chain, the produced methylmercury is bioamplified through the food webs. In this work, a consortia cultivation approach was applied in order to investigate methylators in the periphyton of Ludwigia sp., an invasive macrophyte. Five growth conditions were used in order to favor the growth of different sulfate reducers, the major mercury methylators in this periphyton. A total of 33 consortia containing putative Hg methylators were obtained. Based on the amino acid sequences of HgcA (essential enzyme for Hg methylation), the obtained consortia could be subdivided into five main clusters, affiliated with Desulfovibrionaceae, Desulfobulbaceae and Syntrophobacteraceae. The main cluster, related to Desulfovibrionaceae, showed the highest sequence diversity; notwithstanding most of the sequences of this cluster showed no close representatives. Through the consortia approach, species thus far uncultivated were cultivated. The successful cultivation of these species was probably possible through the metabolites produced by other members of the consortium. The analysis of the microbial composition of the consortia uncover certain microbial interactions that may exist within this complex environment.


Subject(s)
Bacteria , Lakes , Methylmercury Compounds , Onagraceae , Methylmercury Compounds/metabolism , Methylmercury Compounds/toxicity , Lakes/chemistry , Lakes/microbiology , Onagraceae/growth & development , Onagraceae/microbiology , Geologic Sediments/chemistry , Geologic Sediments/microbiology , Periphyton , Phylogeny , Bacteria/classification , Bacteria/growth & development , Bacteria/isolation & purification , Bacteria/metabolism
13.
Environ Sci Pollut Res Int ; 30(2): 3835-3846, 2023 Jan.
Article in English | MEDLINE | ID: mdl-35953752

ABSTRACT

Mercury (Hg) is a global pollutant of environmental and health concern; its methylated form, methylmercury (MeHg), is a potent neurotoxin. Sulfur-containing molecules play a role in MeHg production by microorganisms. While sulfides are considered to limit Hg methylation, sulfate and cysteine were shown to favor this process. However, these two forms can be endogenously converted by microorganisms into sulfide. Here, we explore the effect of sulfide (produced by the cell or supplied exogenously) on Hg methylation. For this purpose, Pseudodesulfovibrio hydrargyri BerOc1 was cultivated in non-sulfidogenic conditions with addition of cysteine and sulfide as well as in sulfidogenic conditions. We report that Hg methylation depends on sulfide concentration in the culture and the sulfides produced by cysteine degradation or sulfate reduction could affect the Hg methylation pattern. Hg methylation was independent of hgcA expression. Interestingly, MeHg production was maximal at 0.1-0.5 mM of sulfides. Besides, a strong positive correlation between MeHg in the extracellular medium and the increase of sulfide concentrations was observed, suggesting a facilitated MeHg export with sulfide and/or higher desorption from the cell. We suggest that sulfides (exogenous or endogenous) play a key role in controlling mercury methylation and should be considered when investigating the impact of Hg in natural environments.


Subject(s)
Mercury , Methylmercury Compounds , Methylmercury Compounds/metabolism , Cysteine , Mercury/metabolism , Sulfides/metabolism , Bacteria/metabolism , Sulfates/metabolism
14.
Mol Ecol Resour ; 23(1): 190-204, 2023 Jan.
Article in English | MEDLINE | ID: mdl-35839241

ABSTRACT

Mercury (Hg) methylation genes (hgcAB) mediate the formation of the toxic methylmercury and have been identified from diverse environments, including freshwater and marine ecosystems, Arctic permafrost, forest and paddy soils, coal-ash amended sediments, chlor-alkali plants discharges and geothermal springs. Here we present the first attempt at a standardized protocol for the detection, identification and quantification of hgc genes from metagenomes. Our Hg-cycling microorganisms in aquatic and terrestrial ecosystems (Hg-MATE) database, a catalogue of hgc genes, provides the most accurate information to date on the taxonomic identity and functional/metabolic attributes of microorganisms responsible for Hg methylation in the environment. Furthermore, we introduce "marky-coco", a ready-to-use bioinformatic pipeline based on de novo single-metagenome assembly, for easy and accurate characterization of hgc genes from environmental samples. We compared the recovery of hgc genes from environmental metagenomes using the marky-coco pipeline with an approach based on coassembly of multiple metagenomes. Our data show similar efficiency in both approaches for most environments except those with high diversity (i.e., paddy soils) for which a coassembly approach was preferred. Finally, we discuss the definition of true hgc genes and methods to normalize hgc gene counts from metagenomes.


Subject(s)
Mercury , Mercury/analysis , Metagenome , Methylation , Ecosystem , Consensus , Soil
15.
Appl Environ Microbiol ; 78(10): 3638-48, 2012 May.
Article in English | MEDLINE | ID: mdl-22407688

ABSTRACT

Mudflats and salt marshes are habitats at the interface of aquatic and terrestrial systems that provide valuable services to ecosystems. Therefore, it is important to determine how catastrophic incidents, such as oil spills, influence the microbial communities in sediment that are pivotal to the function of the ecosystem and to identify the oil-degrading microbes that mitigate damage to the ecosystem. In this study, an oil spill was simulated by use of a tidal chamber containing intact diatom-dominated sediment cores from a temperate mudflat. Changes in the composition of bacteria and diatoms from both the sediment and tidal biofilms that had detached from the sediment surface were monitored as a function of hydrocarbon removal. The hydrocarbon concentration in the upper 1.5 cm of sediments decreased by 78% over 21 days, with at least 60% being attributed to biodegradation. Most phylotypes were minimally perturbed by the addition of oil, but at day 21, there was a 10-fold increase in the amount of cyanobacteria in the oiled sediment. Throughout the experiment, phylotypes associated with the aerobic degradation of hydrocarbons, including polycyclic aromatic hydrocarbons (PAHs) (Cycloclasticus) and alkanes (Alcanivorax, Oleibacter, and Oceanospirillales strain ME113), substantively increased in oiled mesocosms, collectively representing 2% of the pyrosequences in the oiled sediments at day 21. Tidal biofilms from oiled cores at day 22, however, consisted mostly of phylotypes related to Alcanivorax borkumensis (49% of clones), Oceanospirillales strain ME113 (11% of clones), and diatoms (14% of clones). Thus, aerobic hydrocarbon biodegradation is most likely to be the main mechanism of attenuation of crude oil in the early weeks of an oil spill, with tidal biofilms representing zones of high hydrocarbon-degrading activity.


Subject(s)
Bacteria, Aerobic/metabolism , Biofilms/growth & development , Biota , Diatoms/metabolism , Hydrocarbons/metabolism , Soil Microbiology , Water Microbiology , Bacteria, Aerobic/classification , Bacteria, Aerobic/genetics , Bacteria, Aerobic/physiology , Biotransformation , Diatoms/classification , Diatoms/genetics , Diatoms/physiology , Molecular Sequence Data , Sequence Analysis, DNA
16.
Front Microbiol ; 13: 1073483, 2022.
Article in English | MEDLINE | ID: mdl-36699594

ABSTRACT

Patescibacteria form a highly diverse and widespread superphylum of uncultured microorganisms representing a third of the global microbial diversity. Most of our knowledge on Patescibacteria putative physiology relies on metagenomic mining and metagenome-assembled genomes, but the in situ activities and the ecophysiology of these microorganisms have been rarely explored, leaving the role of Patescibacteria in ecosystems elusive. Using a genome-centric metatranscriptomic approach, we analyzed the diel and seasonal gene transcription profiles of 18 Patescibacteria populations in brackish microbial mats to test whether our understanding of Patescibacteria metabolism allows the extrapolation of their in situ activities. Although our results revealed a circadian cycle in Patescibacteria activities, a strong streamlined genetic expression characterized the Patescibacteria populations. This result has a major consequence for the extrapolation of their physiology and environmental function since most transcribed genes were uncharacterized, indicating that the ecophysiology of Patescibacteria cannot be yet reliably predicted from genomic data.

17.
Appl Microbiol Biotechnol ; 92(4): 835-44, 2011 Nov.
Article in English | MEDLINE | ID: mdl-21660544

ABSTRACT

The diversity of alkB-related alkane hydroxylase sequences and the relationship between alkB gene expression and the hydrocarbon contamination level have been investigated in the chronically polluted Etang-de-Berre sediments. For this purpose, these sediments were maintained in microcosms and submitted to a controlled oil input miming an oil spill. New degenerated PCR primers targeting alkB-related alkane hydroxylase sequences were designed to explore the diversity and the expression of these genes using terminal restriction fragment length polymorphism fingerprinting and gene library analyses. Induction of alkB genes was detected immediately after oil addition and their expression detected only during 2 days, although the n-alkane degradation was observed throughout the 14 days of incubation. The alkB gene expression within triplicate microcosms was heterogeneous probably due to the low level of alkB transcripts. Moreover, the alkB gene expression of dominant OTUs has been observed in unoiled microcosms indicating that the expression of this gene cannot be directly related to the oil contamination. Although the dominant alkB genes and transcripts detected were closely related to the alkB of Marinobacter aquaeolei isolated from an oil-producing well, and to alkB genes related to the obligate alkanotroph Alcanivorax borkumensis, no clear relationship between the oil contamination and the expression of the alkB genes could be established. This finding suggests that in such coastal environments, alkB gene expression is not a function relevant enough to monitor bacterial response to oil contamination.


Subject(s)
Cytochrome P-450 CYP4A/genetics , DNA Fingerprinting/methods , Environmental Pollutants/metabolism , Gammaproteobacteria/genetics , Geologic Sediments/microbiology , Petroleum/metabolism , Biodegradation, Environmental , DNA Primers/genetics , Gammaproteobacteria/enzymology , Gene Expression Profiling , Polymerase Chain Reaction/methods , Polymorphism, Genetic , Polymorphism, Restriction Fragment Length
18.
NPJ Biofilms Microbiomes ; 7(1): 83, 2021 11 19.
Article in English | MEDLINE | ID: mdl-34799579

ABSTRACT

Methylmercury, biomagnifying through food chains, is highly toxic for aquatic life. Its production and degradation are largely driven by microbial transformations; however, diversity and metabolic activity of mercury transformers, resulting in methylmercury concentrations in environments, remain poorly understood. Microbial mats are thick biofilms where oxic and anoxic metabolisms cooccur, providing opportunities to investigate the complexity of the microbial mercury transformations over contrasted redox conditions. Here, we conducted a genome-resolved metagenomic and metatranscriptomic analysis to identify putative activity of mercury reducers, methylators and demethylators in microbial mats strongly contaminated by mercury. Our transcriptomic results revealed the major role of rare microorganisms in mercury cycling. Mercury methylators, mainly related to Desulfobacterota, expressed a large panel of metabolic activities in sulfur, iron, nitrogen, and halogen compound transformations, extending known activities of mercury methylators under suboxic to anoxic conditions. Methylmercury detoxification processes were dissociated in the microbial mats with methylmercury cleavage being carried out by sulfide-oxidizing Thiotrichaceae and Rhodobacteraceae populations, whereas mercury reducers included members of the Verrucomicrobia, Bacteroidetes, Gammaproteobacteria, and different populations of Rhodobacteraceae. However most of the mercury reduction was potentially carried out anaerobically by sulfur- and iron-reducing Desulfuromonadaceae, revising our understanding of mercury transformers ecophysiology.


Subject(s)
Mercury , Methylmercury Compounds , Bacteria/genetics , Mercury/toxicity , Metagenome , Transcriptome
19.
Chemosphere ; 278: 130457, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34126687

ABSTRACT

Bacteria and phytoplankton are key players in aquatic ecosystem functioning. Their interactions mediate carbon transfer through the trophic web. Chemical contamination can alter the function and diversity of phytoplankton and bacterioplankton, with important consequences for ecosystem functioning. The aim of the present study was to assess the impact of chemical contamination on the interactions between both biological compartments. Two contrasting marine coastal ecosystems, offshore waters and lagoon waters, were exposed to chemical contamination (artificial or produced from resuspension of contaminated sediment) in microcosms in four seasons characterized by distinct phytoplankton communities. Offshore waters were characterized by a complex phytoplankton-bacterioplankton network with a predominance of positive interactions between both compartments, especially with Haptophyta, Cryptophyta, and dinoflagellates. In contrast, for lagoon waters, the phytoplankton-bacterioplankton network was simpler with a prevalence of negative interactions with Ochrophyta, Cryptophyta, and flagellates. Contamination with an artificial mix of pesticides and trace metal elements resulted in a decrease in the number of interactions between phytoplankton and bacterioplankton, especially for offshore waters. Resuspension of contaminated sediment also altered the interactions between both compartments. The release of nutrients stored in the sediment allowed the growth of nutrient limited phytoplankton species with marked consequences for the interactions with bacterioplankton, with a predominance of positive interactions, whereas in lagoon waters, negative interactions were mostly observed. Overall, this study showed that chemical contamination and sediment resuspension resulted in significant effects on phytoplankton-bacterioplankton interactions that can alter the functioning of anthropogenic coastal ecosystems.


Subject(s)
Phytoplankton , Trace Elements , Bacteria , Ecosystem , Seawater
20.
Appl Environ Microbiol ; 76(9): 2856-65, 2010 May.
Article in English | MEDLINE | ID: mdl-20228118

ABSTRACT

New primers were designed for the amplification of dsrAB genes by nested PCR to investigate the diversity of sulfate-reducing prokaryotes (SRP) in environments with low bacterial cell density. The success of the nested PCR for the determination of SRP diversity was estimated by terminal-restriction fragment length polymorphism analysis in the Reigous, a small creek at an inactive mine (Carnoulès, France), which constitutes an extreme acidic arsenic-rich environment. Nested PCR limits were evaluated in dsrAB-rich sediments, and this technique was compared to direct PCR using either known primers (DSR1F/DSR4R) or new primers (dsr619AF/dsr1905BR). The comparison of clone libraries revealed that, even if the levels of diversity observed were not identical, nested PCR did not reduce the diversity compared to that of direct DSR1F/DSR4R PCR. Clone sequences were affiliated mainly with the Desulfobacteraceae and Desulfohalobiaceae families. Many sequences (approximately 30%) were related to a deeply branching lineage unaffiliated with any cultured SRP. Although this dsrAB cluster was found in all libraries, the new primers better amplified this lineage, providing more information on this unknown bacterial group. Thanks to these new primers in nested PCR, the SRP community from Carnoulès could be characterized. Specific SRP populations were obtained according to environmental characteristics. Desulfomicrobiaceae-related sequences were recovered in samples with low pH, low levels of dissolved oxygen, and high As content, while sequences belonging to the deeply branching group were found in a less extreme sample. Furthermore, for the first time, dsrAB sequences related to the latter group were recovered from freshwater.


Subject(s)
DNA Primers/chemistry , Deltaproteobacteria/isolation & purification , Polymerase Chain Reaction/methods , Sulfates/metabolism , Base Sequence , Biomass , Deltaproteobacteria/genetics , Deltaproteobacteria/metabolism , France , Fresh Water/microbiology , Molecular Sequence Data
SELECTION OF CITATIONS
SEARCH DETAIL