Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 634
Filter
1.
Cell ; 180(6): 1067-1080.e16, 2020 03 19.
Article in English | MEDLINE | ID: mdl-32160527

ABSTRACT

Short-chain fatty acids are processed from indigestible dietary fibers by gut bacteria and have immunomodulatory properties. Here, we investigate propionic acid (PA) in multiple sclerosis (MS), an autoimmune and neurodegenerative disease. Serum and feces of subjects with MS exhibited significantly reduced PA amounts compared with controls, particularly after the first relapse. In a proof-of-concept study, we supplemented PA to therapy-naive MS patients and as an add-on to MS immunotherapy. After 2 weeks of PA intake, we observed a significant and sustained increase of functionally competent regulatory T (Treg) cells, whereas Th1 and Th17 cells decreased significantly. Post-hoc analyses revealed a reduced annual relapse rate, disability stabilization, and reduced brain atrophy after 3 years of PA intake. Functional microbiome analysis revealed increased expression of Treg-cell-inducing genes in the intestine after PA intake. Furthermore, PA normalized Treg cell mitochondrial function and morphology in MS. Our findings suggest that PA can serve as a potent immunomodulatory supplement to MS drugs.


Subject(s)
Multiple Sclerosis/metabolism , Propionates/immunology , Propionates/metabolism , Adult , Aged , Disease Progression , Feces/chemistry , Feces/microbiology , Female , Humans , Immunomodulation/physiology , Male , Middle Aged , Multiple Sclerosis/drug therapy , Multiple Sclerosis/immunology , Neurodegenerative Diseases/metabolism , Neurodegenerative Diseases/therapy , Propionates/therapeutic use , T-Lymphocytes, Regulatory/immunology , Th17 Cells/immunology
2.
Proc Natl Acad Sci U S A ; 121(26): e2403227121, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38885382

ABSTRACT

Treatment with autologous chimeric antigen receptor (CAR) T cells has emerged as a highly effective approach in neuroimmunological disorders such as myasthenia gravis. We report a case of successful anti-CD19 CAR T cell use in treatment-refractory stiff-person syndrome (SPS). To investigate clinical and immunological effects of anti-CD19 CAR T cell use in treatment-refractory SPS, a 69-y-old female with a 9-y history of treatment-refractory SPS with deteriorating episodes of stiffness received an infusion of autologous anti-CD19 CAR T cells (KYV-101) and was monitored clinically and immunologically for more than 6 mo. CAR T cell infusion resulted in reduced leg stiffness, drastic improvement in gait, walking speed increase over 100%, and daily walking distance improvement from less than 50 m to over 6 km within 3 mo. GABAergic medication (benzodiazepines) was reduced by 40%. KYV-101 CAR T cells were well tolerated with only low-grade cytokine release syndrome. This report of successful use of anti-CD19 CAR T cells in treatment-refractory SPS supports continued exploration of this approach in SPS and other B cell-related autoimmune disorders.


Subject(s)
Antigens, CD19 , Immunotherapy, Adoptive , Stiff-Person Syndrome , Humans , Stiff-Person Syndrome/therapy , Stiff-Person Syndrome/immunology , Female , Aged , Immunotherapy, Adoptive/methods , Antigens, CD19/immunology , Receptors, Chimeric Antigen/immunology , T-Lymphocytes/immunology , Treatment Outcome
3.
Proc Natl Acad Sci U S A ; 120(4): e2216941120, 2023 Jan 24.
Article in English | MEDLINE | ID: mdl-36669102

ABSTRACT

In inflammatory neuropathies, oxidative stress results in neuronal and Schwann cell (SC) death promoting early neurodegeneration and clinical disability. Treatment with the short-chain fatty acid propionate showed a significant immunoregulatory and neuroprotective effect in multiple sclerosis patients. Similar effects have been described for patients with chronic inflammatory demyelinating polyneuropathy (CIDP). Therefore, Schwann cell's survival and dorsal root ganglia (DRG) outgrowth were evaluated in vitro after propionate treatment and application of H2O2 or S-nitroso-N-acetyl-D-L-penicillamine (SNAP) to evaluate neuroprotection. In addition, DRG resistance was evaluated by the application of oxidative stress by SNAP ex vivo after in vivo propionate treatment. Propionate treatment secondary to SNAP application on DRG served as a neuroregeneration model. Histone acetylation as well as expression of the free fatty acid receptor (FFAR) 2 and 3, histone deacetylases, neuroregeneration markers, and antioxidative mediators were investigated. ß-hydroxybutyrate was used as a second FFAR3 ligand, and pertussis toxin was used as an FFAR3 antagonist. FFAR3, but not FFAR2, expression was evident on SC and DRG. Propionate-mediated activation of FFAR3 and histone 3 hyperacetylation resulted in increased catalase expression and increased resistance to oxidative stress. In addition, propionate treatment resulted in enhanced neuroregeneration with concomitant growth-associated protein 43 expression. We were able to demonstrate an antioxidative and neuroregenerative effect of propionate on SC and DRG mediated by FFAR3-induced histone acetylases expression. Our results describe a pathway to achieve neuroprotection/neuroregeneration relevant for patients with immune-mediated neuropathies.


Subject(s)
Histones , Propionates , Humans , Propionates/pharmacology , Histones/metabolism , Receptors, G-Protein-Coupled/metabolism , Neuroprotection , Hydrogen Peroxide/pharmacology , Hydrogen Peroxide/metabolism , Ganglia, Spinal/metabolism
4.
Nature ; 566(7744): 388-392, 2019 02.
Article in English | MEDLINE | ID: mdl-30760929

ABSTRACT

Microglia have critical roles not only in neural development and homeostasis, but also in neurodegenerative and neuroinflammatory diseases of the central nervous system1-4. These highly diverse and specialized functions may be executed by subsets of microglia that already exist in situ, or by specific subsets of microglia that develop from a homogeneous pool of cells on demand. However, little is known about the presence of spatially and temporally restricted subclasses of microglia in the central nervous system during development or disease. Here we combine massively parallel single-cell analysis, single-molecule fluorescence in situ hybridization, advanced immunohistochemistry and computational modelling to comprehensively characterize subclasses of microglia in multiple regions of the central nervous system during development and disease. Single-cell analysis of tissues of the central nervous system during homeostasis in mice revealed specific time- and region-dependent subtypes of microglia. Demyelinating and neurodegenerative diseases evoked context-dependent subtypes of microglia with distinct molecular hallmarks and diverse cellular kinetics. Corresponding clusters of microglia were also identified in healthy human brains, and the brains of patients with multiple sclerosis. Our data provide insights into the endogenous immune system of the central nervous system during development, homeostasis and disease, and may also provide new targets for the treatment of neurodegenerative and neuroinflammatory pathologies.


Subject(s)
Microglia/classification , Microglia/cytology , Single-Cell Analysis , Spatio-Temporal Analysis , Animals , Brain/cytology , Brain/pathology , Case-Control Studies , Cell Separation , Demyelinating Diseases/pathology , Female , Humans , Kinetics , Male , Mice , Multiple Sclerosis/pathology , Neurodegenerative Diseases/pathology
5.
Nature ; 568(7751): E4, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30918409

ABSTRACT

In this Letter, Dominic Grün and Sagar have been added to the author list (affiliated with Max-Planck-Institute of Immunology and Epigenetics (MPI-IE), Freiburg, Germany). The author list, 'Author contribution' and 'Acknowledgements' sections have been corrected online. See accompanying Amendment.

6.
J Neurol Neurosurg Psychiatry ; 95(6): 561-570, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38124108

ABSTRACT

BACKGROUND: After natalizumab discontinuation severe relapses can occur despite pregnancy, but third trimester exposure is associated with neonatal haematological abnormalities (HA). The best time point for stopping natalizumab during pregnancy is unclear. METHODS: Prospective, observational cohort with 350 natalizumab exposed pregnancies from the German Multiple Sclerosis and Pregnancy Registry. Clinical disease activity and neonatal outcomes are compared between women with natalizumab discontinuation during (1st Trim-group) versus after the first trimester (maintaining-group) and for subgroup analysis before (<30-subgroup) or after (≥30-subgroup) the 30th gestational week (gw). RESULTS: Baseline characteristics did not significantly differ between the 1st Trim-group (n=179; median exposure duration: 2.60 gw, IQR 1.30-3.60) and the maintaining-group (n=171; median exposure duration: 30.9 gw, IQR 26.9-33.3). Fewer relapses occurred during pregnancy and the postpartum year in the maintaining-group (25.7%) compared with the 1st Trim-group (62.6%; p<0.001). Women in ≥30-subgroup had a significantly lower relapse risk in the first 6 months postpartum (relapse rate ratio: 0.36, 95% CI: 0.15 to 0.84). In total, 7.5% retained meaningful disability 12 months postpartum. No significant effect on neonatal outcomes were observed, but anaemia (OR: 2.62, 95% CI: 1.12 to 6.52) and thrombocytopaenia (OR: 2.64, 95% CI: 1.15 to 6.46) were significantly more common in the ≥30-subgroup. 21.8% of all neonates were born small for gestational age, independent of the timing of natalizumab discontinuation. CONCLUSION: Continuing natalizumab during pregnancy after gw 30 decreases the relapse risk postpartum going along with a higher risk for HA in the newborns. These results add relevant knowledge as a basis for informed risk-benefit discussion.


Subject(s)
Natalizumab , Humans , Natalizumab/therapeutic use , Natalizumab/adverse effects , Pregnancy , Female , Adult , Infant, Newborn , Prospective Studies , Pregnancy Complications/drug therapy , Immunologic Factors/therapeutic use , Immunologic Factors/adverse effects , Pregnancy Outcome , Recurrence , Multiple Sclerosis/drug therapy , Registries , Multiple Sclerosis, Relapsing-Remitting/drug therapy
7.
J Neurol Neurosurg Psychiatry ; 95(2): 151-157, 2024 Jan 11.
Article in English | MEDLINE | ID: mdl-37536925

ABSTRACT

BACKGROUND: Relapse risk after delivery is increased in women with active multiple sclerosis (MS), the best strategy to reduce it is unknown. We aimed to assess the association of four different postpartum strategies with relapses during the first 6 months post partum. METHODS: This cohort study includes data prospectively collected through structured telephone interviews from the German Multiple Sclerosis and Pregnancy Registry. Pregnancies with active MS (fingolimod or natalizumab treatment OR relapse within 1 year before pregnancy) and postpartum follow-up of ≥6 months were included. We compared four strategies: (1) intention to breastfeed exclusively without disease-modifying therapy (DMT) (exclusive breast feeding ≥2 months or switching to non-exclusive/weaning within 2 weeks after a relapse during the first 2 months), (2) early treatment with natalizumab/fingolimod and (3) other DMT initiated within 6 weeks post partum before a relapse. If women did not or only partially breastfed, or started DMT≤6 weeks after delivery after a relapse or later, we assumed (4) no-DMT-no-exclusive- breastfeeding-strategy. Main outcome was time to postpartum MS relapses. RESULTS: In 867 women with 911 pregnancies, most (n=416) intended to breastfeed exclusively or had no-DMT-no-exclusive-breastfeeding-strategy (n=290); fewer started fingolimod (n=38), natalizumab (n=74) or another DMT (n=93) early. Recurrent time-to-event analysis showed a statistically significant reduction in relapse hazard only with the natalizumab/fingolimod-strategy as of months 3-4 post partum compared with intention-to-breastfeed-exclusively-strategy. The very early relapse risk was highest in no-DMT-no-exclusive-breastfeeding-strategy. CONCLUSION: In active MS, an early postpartum treatment strategy should be determined well before delivery. Natalizumab/fingolimod-strategy reduced postpartum relapse hazard from month 3, but none diminished the early postpartum relapse hazard.


Subject(s)
Multiple Sclerosis, Relapsing-Remitting , Multiple Sclerosis , Pregnancy , Female , Humans , Multiple Sclerosis/drug therapy , Natalizumab/therapeutic use , Cohort Studies , Fingolimod Hydrochloride/therapeutic use , Postpartum Period , Recurrence , Multiple Sclerosis, Relapsing-Remitting/drug therapy , Immunosuppressive Agents
8.
Mult Scler ; 30(11-12): 1561-1565, 2024 Oct.
Article in English | MEDLINE | ID: mdl-38877721

ABSTRACT

BACKGROUND: While John Cunningham virus (JCV) is known to cause neuronal damage in progressive multifocal leukoencephalopathy (PML) among natalizumab-treated MS patients, its association with axonal loss in non-PML conditions remains unclear. METHODS: In a cohort of 128 natalizumab-treated MS patients, serum neurofilament (sNfL) levels and JCV antibody titres were measured. RESULTS: Among 128 patients (mean age = 38.4 years, 71.9% female), 51 (40%) were JCV positive. NfL levels increased by 15.3% for JCV index <0.7 (95% confidence interval [CI] = 0.963-1.381), by 18.6% for index 0.7-1.5 (95% CI = 1.009-1.394) and by 21.1% for index >1.5 (95% CI = 1.040-1.409) compared to JCV negative patients. CONCLUSION: These findings indicate a potential link between JCV burden and neuroaxonal degeneration in natalizumab-treated MS patients.


Subject(s)
Antibodies, Viral , Immunologic Factors , JC Virus , Multiple Sclerosis , Natalizumab , Neurofilament Proteins , Humans , Natalizumab/adverse effects , JC Virus/immunology , Female , Male , Adult , Middle Aged , Antibodies, Viral/blood , Neurofilament Proteins/blood , Multiple Sclerosis/drug therapy , Multiple Sclerosis/immunology , Multiple Sclerosis/blood , Immunologic Factors/adverse effects , Axons/pathology , Leukoencephalopathy, Progressive Multifocal/immunology , Leukoencephalopathy, Progressive Multifocal/blood
9.
Immunity ; 43(4): 817-29, 2015 Oct 20.
Article in English | MEDLINE | ID: mdl-26488817

ABSTRACT

Growing empirical evidence suggests that nutrition and bacterial metabolites might impact the systemic immune response in the context of disease and autoimmunity. We report that long-chain fatty acids (LCFAs) enhanced differentiation and proliferation of T helper 1 (Th1) and/or Th17 cells and impaired their intestinal sequestration via p38-MAPK pathway. Alternatively, dietary short-chain FAs (SCFAs) expanded gut T regulatory (Treg) cells by suppression of the JNK1 and p38 pathway. We used experimental autoimmune encephalomyelitis (EAE) as a model of T cell-mediated autoimmunity to show that LCFAs consistently decreased SCFAs in the gut and exacerbated disease by expanding pathogenic Th1 and/or Th17 cell populations in the small intestine. Treatment with SCFAs ameliorated EAE and reduced axonal damage via long-lasting imprinting on lamina-propria-derived Treg cells. These data demonstrate a direct dietary impact on intestinal-specific, and subsequently central nervous system-specific, Th cell responses in autoimmunity, and thus might have therapeutic implications for autoimmune diseases such as multiple sclerosis.


Subject(s)
Autoimmunity/drug effects , Central Nervous System/immunology , Dietary Fats/pharmacology , Duodenum/immunology , Encephalomyelitis, Autoimmune, Experimental/etiology , Fatty Acids/pharmacology , Lymphopoiesis/drug effects , T-Lymphocyte Subsets/drug effects , Animals , Dietary Fats/toxicity , Duodenum/metabolism , Duodenum/microbiology , Encephalomyelitis, Autoimmune, Experimental/immunology , Encephalomyelitis, Autoimmune, Experimental/metabolism , Fatty Acids/chemistry , Fatty Acids/toxicity , Fecal Microbiota Transplantation , Gastrointestinal Microbiome/physiology , Gene Expression Regulation/immunology , Lauric Acids/toxicity , Liver X Receptors , MAP Kinase Signaling System , Mice , Molecular Weight , Orphan Nuclear Receptors/biosynthesis , Orphan Nuclear Receptors/genetics , Receptors, G-Protein-Coupled/biosynthesis , Receptors, G-Protein-Coupled/genetics , Spleen/immunology , Spleen/pathology , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/metabolism , T-Lymphocytes, Regulatory/immunology , Th1 Cells/immunology , Th17 Cells/immunology , Transcriptome
10.
Eur J Neurol ; 31(1): e16023, 2024 01.
Article in English | MEDLINE | ID: mdl-37539836

ABSTRACT

INTRODUCTION: Serum neurofilament light chain (sNfL) is a marker for axonal degeneration. Patients with chronic inflammatory demyelinating polyradiculoneuropathy (CIDP) often report a fluctuation of symptoms throughout one treatment cycle with intravenous immunoglobulins (IVIG). The aim of this study was to determine whether sNfL is suitable to quantify patient-reported symptom fluctuations. METHODS: Twenty-nine patients with the diagnosis of CIDP or a CIDP-variant under treatment with IVIG were recruited in this study and underwent examination before IVIG infusion, in the middle of the treatment interval, and before their next IVIG infusion. Patients were surveyed regarding symptom fluctuations at the last visit and divided into two groups: those with and without fluctuations of symptoms. At the first visit, sociodemographic and disease-specific data were collected. Clinical scores were assessed at every examination. sNfL values were compared between both groups at the different time points after conversion into Z-scores-adjusted for age and body mass index. RESULTS: Patients with CIDP show elevated sNfL Z-scores (median at baseline: 2.14, IQR: 1.0). There was no significant change in sNfL Z-scores or questionnaire scores within the treatment cycle in either group. There was no significant difference in sNfL levels between the patients with and without symptom fluctuations. CONCLUSIONS: CIDP patients show elevated sNfL levels. However, sNfL is not suitable to reflect patient-reported fluctuations of symptoms. This indicates that symptom fluctuations during treatment with IVIG in patients with CIDP are not caused by a neuroaxonal injury. Furthermore, repeated sNfL measurements within one treatment cycle with IVIG seem to have no benefit for symptom monitoring.


Subject(s)
Polyradiculoneuropathy, Chronic Inflammatory Demyelinating , Humans , Polyradiculoneuropathy, Chronic Inflammatory Demyelinating/diagnosis , Polyradiculoneuropathy, Chronic Inflammatory Demyelinating/drug therapy , Immunoglobulins, Intravenous/therapeutic use , Self Report , Intermediate Filaments
11.
Eur J Neurol ; 31(4): e16205, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38205888

ABSTRACT

BACKGROUND AND PURPOSE: Chronic inflammatory demyelinating polyneuropathy (CIDP) is an autoimmune disease with humoral and cellular autoimmunity causing demyelination of peripheral nerves, commonly treated with intravenous immunoglobulins (IVIg). The neonatal Fc receptor (FcRn), encoded by the FCGRT gene, prevents the degradation of immunoglobulin G (IgG) by recycling circulating IgG. A variable number of tandem repeat (VNTR) polymorphism in the promoter region of the FCGRT gene is associated with different expression levels of mRNA and protein. Thus, patients with genotypes associated with relatively low FcRn expression may show a poorer treatment response to IVIg due to increased IVIg degradation. METHODS: VNTR genotypes were analyzed in 144 patients with CIDP. Patients' clinical data, including neurological scores and treatment data, were collected as part of the Immune-Mediated Neuropathies Biobank registry. RESULTS: Most patients (n = 124, 86%) were VNTR 3/3 homozygotes, and 20 patients (14%) were VNTR 2/3 heterozygotes. Both VNTR 3/3 and VNTR 2/3 genotype groups showed no difference in clinical disability and immunoglobulin dosage. However, patients with a VNTR 2 allele were more likely to receive subcutaneous immunoglobulins (SCIg) than patients homozygous for the VNTR 3 allele (25% vs. 9.7%, p = 0.02) and were more likely to receive second-line therapy (75% vs. 54%, p = 0.05). CONCLUSIONS: The VNTR 2/3 genotype is associated with the administration of SCIg, possibly reflecting a greater benefit from SCIg due to more constant immunoglobulin levels without lower IVIg levels between the treatment circles. Also, the greater need for second-line treatment in VNTR 2/3 patients could be an indirect sign of a lower response to immunoglobulins.


Subject(s)
Histocompatibility Antigens Class I , Polyradiculoneuropathy, Chronic Inflammatory Demyelinating , Receptors, Fc , Infant, Newborn , Humans , Polyradiculoneuropathy, Chronic Inflammatory Demyelinating/drug therapy , Immunoglobulins, Intravenous/therapeutic use , Minisatellite Repeats , Immunoglobulin G , Promoter Regions, Genetic
12.
BMC Neurol ; 24(1): 299, 2024 Aug 28.
Article in English | MEDLINE | ID: mdl-39198811

ABSTRACT

BACKGROUND: Neurosarcoidosis is a rare entity, usually within the context of systematic sarcoidosis. Isolated neurosarcoidosis and especially a manifestation with pachymeningitis is a notable rarity. CASE REPORT: A 26-year-old patient presented to the emergency department with acute onset, recurrent episodes of occipital headaches spreading over the whole cranium and vomiting without food consumption, for three days. The clinical examination did not reveal any neurological deficits. The laboratory exams showed no pathological findings. A CT examination with angiography did not detect any acute intracranial or vessel pathology. A lumbar puncture was performed to rule out subarachnoid hemorrhage. The results showed a lymphocytic pleocytosis of 400/µL, elevated protein levels of 1077 mg/dL and reduced glucose levels (CSF: 55 mg/dL, Serum: 118 mg/dL). Extensive infectiological examinations did not reveal any signs of infection, including Borrelia spp. and M. tuberculosis. No positive auto-antibodies or vasculitis-related auto-antibodies were detected. The CSF analysis showed negative oligoclonal bands but an isolated increase in ß2-microglobulin, neopterin, and IL-2R levels. The MRI examination revealed a dural gadolinium-enhancement, pronounced in the basal cerebral structures and the upper segment of the cervical spine, consistent with neurosarcoidosis. Corticosteroid treatment rapidly led to a significant improvement of the symptoms. No systemic manifestations of sarcoidosis were found. CONCLUSIONS: This case report aims to highlight aseptic meningitis with atypical, acute onset headache attacks as a possible manifestation of isolated neurosarcoidosis. Neurosarcoidosis is a clinical entity that requires prompt treatment to avoid permanent neurological deficits.


Subject(s)
Central Nervous System Diseases , Meningitis, Aseptic , Sarcoidosis , Vomiting , Adult , Humans , Central Nervous System Diseases/diagnosis , Central Nervous System Diseases/complications , Central Nervous System Diseases/drug therapy , Fever/diagnosis , Fever/drug therapy , Fever/etiology , Headache/diagnosis , Headache/drug therapy , Headache/etiology , Meningitis, Aseptic/diagnosis , Meningitis, Aseptic/drug therapy , Meningitis, Aseptic/etiology , Sarcoidosis/complications , Sarcoidosis/diagnosis , Sarcoidosis/drug therapy , Vomiting/etiology
13.
Brain ; 146(2): 600-611, 2023 02 13.
Article in English | MEDLINE | ID: mdl-35259208

ABSTRACT

Anti-IgLON5 disease is a newly defined clinical entity characterized by a progressive course with high disability and mortality rate. While precise pathogenetic mechanisms remain unclear, features characteristic of both autoimmune and neurodegenerative diseases were reported. Data on immunotherapy are limited, and its efficacy remains controversial. In this study, we retrospectively investigated an anti-IgLON5 disease cohort with special focus on clinical, serological and genetic predictors of the immunotherapy response and long-term outcome. Patients were recruited from the GENERATE (German Network for Research on Autoimmune Encephalitis) registry. Along with clinical parameters, anti-IgLON5 immunoglobulin (Ig)G in serum and CSF, anti-IgLON5 IgG1-4, IgA and IgM in serum, neurofilament light chain and glial fibrillary acidic protein in serum as well as human leukocyte antigen-genotypes were determined. We identified 53 patients (symptom onset 63.8 ± 10.3 years, female:male 1:1.5). The most frequent initial clinical presentations were bulbar syndrome, hyperkinetic syndrome or isolated sleep disorder [at least one symptom present in 38% (20/53)]. At the time of diagnosis, the majority of patients had a generalized multi-systemic phenotype; nevertheless, 21% (11/53) still had an isolated brainstem syndrome and/or a characteristic sleep disorder only. About one third of patients [28% (15/53)] reported subacute disease onset and 51% (27/53) relapse-like exacerbations during the disease course. Inflammatory CSF changes were evident in 37% (19/51) and increased blood-CSF-barrier permeability in 46% (21/46). CSF cell count significantly decreased, while serum anti-IgLON5 IgG titre increased with disease duration. The presence of human leukocyte antigen-DRB1*10:01 [55% (24/44)] was associated with higher serum anti-IgLON5 IgG titres. Neurofilament light chain and glial fibrillary acidic protein in serum were substantially increased (71.1 ± 103.9 pg/ml and 126.7 ± 73.3 pg/ml, respectively). First-line immunotherapy of relapse-like acute-to-subacute exacerbation episodes resulted in improvement in 41% (11/27) of patients and early initiation within the first 6 weeks was a predictor for therapy response. Sixty-eight per cent (36/53) of patients were treated with long-term immunotherapy and 75% (27/36) of these experienced no further disease progression (observation period of 20.2 ± 15.4 months). Long-term immunotherapy initiation during the first year after onset and low pre-treatment neurofilament light chain were significant predictors for a better outcome. In conclusion, subacute disease onset and early inflammatory CSF changes support the primary role of autoimmune mechanisms at least at initial stages of anti-IgLON5 disease. Early immunotherapy, prior to advanced neurodegeneration, is associated with a better long-term clinical outcome. Low serum neurofilament light chain at treatment initiation may serve as a potential biomarker of the immunotherapy response.


Subject(s)
Sleep Wake Disorders , Humans , Male , Female , Glial Fibrillary Acidic Protein , Retrospective Studies , Immunoglobulin G/metabolism , Disease Progression , Immunotherapy
14.
Neuroradiology ; 66(2): 193-205, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38110539

ABSTRACT

PURPOSE: We aimed to validate the estimation of the brain parenchymal fraction (BPF) in patients with multiple sclerosis (MS) using synthetic magnetic resonance imaging (SyMRI) by comparison with software tools of the FMRIB Software Library (FSL). In addition to a cross-sectional method comparison, longitudinal volume changes were assessed to further elucidate the suitability of SyMRI for quantification of disease-specific changes. METHODS: MRI data from 216 patients with MS and 28 control participants were included for volume estimation by SyMRI and FSL-SIENAX. Moreover, longitudinal data from 35 patients with MS were used to compare registration-based percentage brain volume changes estimated using FSL-SIENA to difference-based calculations of volume changes using SyMRI. RESULTS: We observed strong correlations of estimated brain volumes between the two methods. While SyMRI overestimated grey matter and BPF compared to FSL-SIENAX, indicating a systematic bias, there was excellent agreement according to intra-class correlation coefficients for grey matter and good agreement for BPF and white matter. Bland-Altman plots suggested that the inter-method differences in BPF were smaller in patients with brain atrophy compared to those without atrophy. Longitudinal analyses revealed a tendency for higher atrophy rates for SyMRI than for SIENA, but SyMRI had a robust correlation and a good agreement with SIENA. CONCLUSION: In summary, BPF based on data from SyMRI and FSL-SIENAX is not directly transferable because an overestimation and higher variability of SyMRI values were observed. However, the consistency and correlations between the two methods were satisfactory, and SyMRI was suitable to quantify disease-specific atrophy in MS.


Subject(s)
Brain , Multiple Sclerosis , Humans , Cross-Sectional Studies , Sclerosis/pathology , Brain/diagnostic imaging , Brain/pathology , Magnetic Resonance Imaging/methods , Multiple Sclerosis/diagnostic imaging , Multiple Sclerosis/pathology , Software , Atrophy/pathology
15.
Proc Natl Acad Sci U S A ; 118(1)2021 01 05.
Article in English | MEDLINE | ID: mdl-33376202

ABSTRACT

Multiple sclerosis (MS) disease risk is associated with reduced sun-exposure. This study assessed the relationship between measures of sun exposure (vitamin D [vitD], latitude) and MS severity in the setting of two multicenter cohort studies (nNationMS = 946, nBIONAT = 990). Additionally, effect-modification by medication and photosensitivity-associated MC1R variants was assessed. High serum vitD was associated with a reduced MS severity score (MSSS), reduced risk for relapses, and lower disability accumulation over time. Low latitude was associated with higher vitD, lower MSSS, fewer gadolinium-enhancing lesions, and lower disability accumulation. The association of latitude with disability was lacking in IFN-ß-treated patients. In carriers of MC1R:rs1805008(T), who reported increased sensitivity toward sunlight, lower latitude was associated with higher MRI activity, whereas for noncarriers there was less MRI activity at lower latitudes. In a further exploratory approach, the effect of ultraviolet (UV)-phototherapy on the transcriptome of immune cells of MS patients was assessed using samples from an earlier study. Phototherapy induced a vitD and type I IFN signature that was most apparent in monocytes but that could also be detected in B and T cells. In summary, our study suggests beneficial effects of sun exposure on established MS, as demonstrated by a correlative network between the three factors: Latitude, vitD, and disease severity. However, sun exposure might be detrimental for photosensitive patients. Furthermore, a direct induction of type I IFNs through sun exposure could be another mechanism of UV-mediated immune-modulation in MS.


Subject(s)
Monocytes/radiation effects , Multiple Sclerosis/blood , Multiple Sclerosis/immunology , Receptor, Melanocortin, Type 1/genetics , Transcriptome/radiation effects , Vitamin D/blood , B-Lymphocytes/radiation effects , Cohort Studies , Female , Genetic Variation , Genotype , Humans , Interferon-beta/pharmacology , Interferon-beta/therapeutic use , Male , Middle Aged , Monocytes/metabolism , Multiple Sclerosis/pathology , Multiple Sclerosis/radiotherapy , Phenotype , Phototherapy , Recurrence , Severity of Illness Index , Sunlight , T-Lymphocytes/metabolism , T-Lymphocytes/radiation effects , Transcriptome/genetics
16.
Ultraschall Med ; 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38917825

ABSTRACT

PURPOSE: Post-stroke depression (PSD) is a common complication after stroke and has a substantial effect on the quality of life of patients. Nevertheless, reliable individual prediction of PSD is not possible. As depressive symptoms have been associated with brainstem raphe (BR) hypoechogenicity on transcranial sonography (TCS), we aimed to explore the association of BR hypoechogenicity and the occurrence of PSD. MATERIALS AND METHODS: The Prognostic Markers of Post-Stroke Depression (PROMoSD) study is a prospective, observational, single-center, investigator-initiated study that included patients with acute ischemic stroke (AIS) to investigate the presence of BR hypoechogenicity by TCS early after symptom onset. The primary outcome was the presence of PSD assessed at the three-month follow-up investigation by a blinded psychiatrist and defined according to the fifth version of the Diagnostic and Statistical Manual of Mental Disorders (DSM-V criteria). RESULTS: From 105 included AIS patients, 99 patients completed the study. AIS patients with a hypoechogenic BR developed a PSD at three months more frequently compared to patients with normal echogenicity (48.0% versus 4.1%, P <0.001). After adjustment for confounders (sex, mRS at follow-up, previous depressive episode), a hypoechogenic BR remained independently associated with a substantial increase in the appearance of PSD (adjusted OR: 6.371, 95%-CI: 1.181-34.362). CONCLUSION: A hypoechogenic BR is a strong and independent predictor of PSD at three months after AIS. TCS could be a routine tool to assess PSD risk in clinical practice, thereby streamlining diagnostic and therapeutic algorithms.

17.
EMBO J ; 38(9)2019 05 02.
Article in English | MEDLINE | ID: mdl-30886048

ABSTRACT

Neurodegenerative diseases are characterized by the accumulation of misfolded proteins in the brain. Insights into protein quality control mechanisms to prevent neuronal dysfunction and cell death are crucial in developing causal therapies. Here, we report that various disease-associated protein aggregates are modified by the linear ubiquitin chain assembly complex (LUBAC). HOIP, the catalytic component of LUBAC, is recruited to misfolded Huntingtin in a p97/VCP-dependent manner, resulting in the assembly of linear polyubiquitin. As a consequence, the interactive surface of misfolded Huntingtin species is shielded from unwanted interactions, for example with the low complexity sequence domain-containing transcription factor Sp1, and proteasomal degradation of misfolded Huntingtin is facilitated. Notably, all three core LUBAC components are transcriptionally regulated by Sp1, linking defective LUBAC expression to Huntington's disease. In support of a protective activity of linear ubiquitination, silencing of OTULIN, a deubiquitinase with unique specificity for linear polyubiquitin, decreases proteotoxicity, whereas silencing of HOIP has the opposite effect. These findings identify linear ubiquitination as a protein quality control mechanism and hence a novel target for disease-modifying strategies in proteinopathies.


Subject(s)
Huntingtin Protein/metabolism , Huntington Disease/metabolism , Polyubiquitin/metabolism , Protein Processing, Post-Translational , Sp1 Transcription Factor/metabolism , Valosin Containing Protein/metabolism , Adult , Aged , Animals , Brain/metabolism , Brain/pathology , Case-Control Studies , Cells, Cultured , Embryo, Mammalian/cytology , Embryo, Mammalian/metabolism , Female , Fibroblasts/cytology , Fibroblasts/metabolism , Humans , Huntingtin Protein/genetics , Huntington Disease/genetics , Huntington Disease/pathology , Male , Mice , Mice, Knockout , Middle Aged , NF-kappa B/genetics , NF-kappa B/metabolism , Neurons/metabolism , Neurons/pathology , Protein Binding , Protein Interaction Domains and Motifs , Signal Transduction , Sp1 Transcription Factor/genetics , Ubiquitination , Valosin Containing Protein/genetics
18.
Curr Opin Neurol ; 36(5): 373-381, 2023 10 01.
Article in English | MEDLINE | ID: mdl-37382111

ABSTRACT

PURPOSE OF REVIEW: The purpose if this review is to provide an overview of the available data on the use of nerve ultrasound for the diagnosis and follow-up of peripheral neuropathies. RECENT FINDINGS: During the last decade, nerve ultrasound has been established as a complementary tool for the evaluation of morphological changes mostly for immune-mediated polyneuropathies. Through the development of ultrasound protocols for evaluation of disease-specific sites, nerve ultrasound has proven to be a practical, widely available, reproducible diagnostic tool with no relevant contraindications. SUMMARY: Cross-sectional area, echogenicity, morphology of the individual nerve fascicles, thickness of the epineurium, vascularization and mobility of the nerve are the main parameters evaluated with nerve ultrasound in polyneuropathies. Patients with typical chronic inflammatory demyelinating polyneuropathy show multifocal nerve enlargements easily visible on the upper extremities and the brachial plexus, whereas its variants show focal nerve enlargements. On the other hand, axonal neuropathies including diabetic neuropathy present with isolated nerve enlargement mostly in compression sites.


Subject(s)
Diabetic Neuropathies , Polyneuropathies , Polyradiculoneuropathy, Chronic Inflammatory Demyelinating , Humans , Follow-Up Studies , Polyneuropathies/diagnostic imaging , Polyradiculoneuropathy, Chronic Inflammatory Demyelinating/diagnostic imaging , Ultrasonography/methods , Peripheral Nerves/diagnostic imaging
19.
Ann Neurol ; 91(2): 192-202, 2022 02.
Article in English | MEDLINE | ID: mdl-34967456

ABSTRACT

OBJECTIVE: Fatigue is a frequent and severe symptom in multiple sclerosis (MS), but its pathophysiological origin remains incompletely understood. We aimed to examine the predictive value of subcortical gray matter volumes for fatigue severity at disease onset and after 4 years by applying structural equation modeling (SEM). METHODS: This multicenter cohort study included 601 treatment-naive patients with MS after the first demyelinating event. All patients underwent a standardized 3T magnetic resonance imaging (MRI) protocol. A subgroup of 230 patients with available clinical follow-up data after 4 years was also analyzed. Associations of subcortical volumes (included into SEM) with MS-related fatigue were studied regarding their predictive value. In addition, subcortical regions that have a central role in the brain network (hubs) were determined through structural covariance network (SCN) analysis. RESULTS: Predictive causal modeling identified volumes of the caudate (s [standardized path coefficient] = 0.763, p = 0.003 [left]; s = 0.755, p = 0.006 [right]), putamen (s = 0.614, p = 0.002 [left]; s = 0.606, p = 0.003 [right]) and pallidum (s = 0.606, p = 0.012 [left]; s = 0.606, p = 0.012 [right]) as prognostic factors for fatigue severity in the cross-sectional cohort. Moreover, the volume of the pons was additionally predictive for fatigue severity in the longitudinal cohort (s = 0.605, p = 0.013). In the SCN analysis, network hubs in patients with fatigue worsening were detected in the putamen (p = 0.008 [left]; p = 0.007 [right]) and pons (p = 0.0001). INTERPRETATION: We unveiled predictive associations of specific subcortical gray matter volumes with fatigue in an early and initially untreated MS cohort. The colocalization of these subcortical structures with network hubs suggests an early role of these brain regions in terms of fatigue evolution. ANN NEUROL 2022;91:192-202.


Subject(s)
Brain/diagnostic imaging , Fatigue/diagnostic imaging , Multiple Sclerosis/diagnostic imaging , Adult , Cohort Studies , Cross-Sectional Studies , Demyelinating Diseases/diagnostic imaging , Fatigue/etiology , Fatigue/physiopathology , Female , Follow-Up Studies , Gray Matter/diagnostic imaging , Humans , Longitudinal Studies , Magnetic Resonance Imaging , Male , Middle Aged , Multiple Sclerosis/complications , Multiple Sclerosis/physiopathology , Nerve Net/diagnostic imaging , Nerve Net/physiopathology , Pons/diagnostic imaging , Predictive Value of Tests , Prognosis , Putamen/diagnostic imaging , Young Adult
20.
J Neurol Neurosurg Psychiatry ; 94(1): 57-61, 2023 01.
Article in English | MEDLINE | ID: mdl-36319190

ABSTRACT

BACKGROUND: Obesity reportedly increases the risk for developing multiple sclerosis (MS), but little is known about its association with disability accumulation. METHODS: This nationwide longitudinal cohort study included 1066 individuals with newly diagnosed MS from the German National MS cohort. Expanded Disability Status Scale (EDSS) scores, relapse rates, MRI findings and choice of immunotherapy were compared at baseline and at years 2, 4 and 6 between obese (body mass index, BMI ≥30 kg/m2) and non-obese (BMI <30 kg/m2) patients and correlated with individual BMI values. RESULTS: Presence of obesity at disease onset was associated with higher disability at baseline and at 2, 4 and 6 years of follow-up (p<0.001). Median time to reach EDSS 3 was 0.99 years for patients with BMI ≥30 kg/m2 and 1.46 years for non-obese patients. Risk to reach EDSS 3 over 6 years was significantly increased in patients with BMI ≥30 kg/m2 compared with patients with BMI <30 kg/m2 after adjustment for sex, age, smoking (HR 1.87; 95% CI 1.3 to 2.6; log-rank test p<0.001) and independent of disease-modifying therapies. Obesity was not significantly associated with higher relapse rates, increased number of contrast-enhancing MRI lesions or higher MRI T2 lesion burden over 6 years of follow-up. CONCLUSIONS: Obesity in newly diagnosed patients with MS is associated with higher disease severity and poorer outcome. Obesity management could improve clinical outcome of MS.


Subject(s)
Multiple Sclerosis, Relapsing-Remitting , Multiple Sclerosis , Humans , Multiple Sclerosis/complications , Multiple Sclerosis/epidemiology , Multiple Sclerosis/therapy , Multiple Sclerosis, Relapsing-Remitting/drug therapy , Longitudinal Studies , Magnetic Resonance Imaging , Obesity/complications , Obesity/epidemiology , Recurrence , Disease Progression
SELECTION OF CITATIONS
SEARCH DETAIL